IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i1p192-201.html
   My bibliography  Save this article

Restricted mean survival time as a function of restriction time

Author

Listed:
  • Yingchao Zhong
  • Douglas E. Schaubel

Abstract

Restricted mean survival time (RMST) is a clinically interpretable and meaningful survival metric that has gained popularity in recent years. Several methods are available for regression modeling of RMST, most based on pseudo‐observations or what is essentially an inverse‐weighted complete‐case analysis. No existing RMST regression method allows for the covariate effects to be expressed as functions over time. This is a considerable limitation, in light of the many hazard regression methods that do accommodate such effects. To address this void in the literature, we propose RMST methods that permit estimating time‐varying effects. In particular, we propose an inference framework for directly modeling RMST as a continuous function of L. Large‐sample properties are derived. Simulation studies are performed to evaluate the performance of the methods in finite sample sizes. The proposed framework is applied to kidney transplant data obtained from the Scientific Registry of Transplant Recipients.

Suggested Citation

  • Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:192-201
    DOI: 10.1111/biom.13414
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13414
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongwei Zhao & Anastasios A. Tsiatis, 1999. "Efficient Estimation of the Distribution of Quality-Adjusted Survival Time," Biometrics, The International Biometric Society, vol. 55(4), pages 1101-1107, December.
    2. Lu Tian & Haoda Fu & Stephen J. Ruberg & Hajime Uno & Lee†Jen Wei, 2018. "Efficiency of two sample tests via the restricted mean survival time for analyzing event time observations," Biometrics, The International Biometric Society, vol. 74(2), pages 694-702, June.
    3. James M. Robins & Dianne M. Finkelstein, 2000. "Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests," Biometrics, The International Biometric Society, vol. 56(3), pages 779-788, September.
    4. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    5. Lihui Zhao & Brian Claggett & Lu Tian & Hajime Uno & Marc A. Pfeffer & Scott D. Solomon & Lorenzo Trippa & L. J. Wei, 2016. "On the restricted mean survival time curve in survival analysis," Biometrics, The International Biometric Society, vol. 72(1), pages 215-221, March.
    6. Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
    7. Guanghui Wei & Douglas E. Schaubel, 2008. "Estimating Cumulative Treatment Effects in the Presence of Nonproportional Hazards," Biometrics, The International Biometric Society, vol. 64(3), pages 724-732, September.
    8. Xin Wang & Douglas E. Schaubel, 2018. "Modeling restricted mean survival time under general censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 176-199, January.
    9. Min Zhang & Douglas E. Schaubel, 2011. "Estimating Differences in Restricted Mean Lifetime Using Observational Data Subject to Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 740-749, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    2. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    3. Lu Mao, 2023. "Nonparametric inference of general while‐alive estimands for recurrent events," Biometrics, The International Biometric Society, vol. 79(3), pages 1749-1760, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wang & Douglas E. Schaubel, 2018. "Modeling restricted mean survival time under general censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 176-199, January.
    2. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    3. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    4. Min Zhang & Douglas E. Schaubel, 2012. "Double-Robust Semiparametric Estimator for Differences in Restricted Mean Lifetimes in Observational Studies," Biometrics, The International Biometric Society, vol. 68(4), pages 999-1009, December.
    5. Yasuhiro Hagiwara & Tomohiro Shinozaki & Yutaka Matsuyama, 2020. "G‐estimation of structural nested restricted mean time lost models to estimate effects of time‐varying treatments on a failure time outcome," Biometrics, The International Biometric Society, vol. 76(3), pages 799-810, September.
    6. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    7. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    8. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    9. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    10. Adin-Cristian Andrei & Susan Murray, 2007. "Regression Models for the Mean of the Quality-of-Life-Adjusted Restricted Survival Time Using Pseudo-Observations," Biometrics, The International Biometric Society, vol. 63(2), pages 398-404, June.
    11. Jiyang Wen & Chen Hu & Mei‐Cheng Wang, 2023. "Joint inference for competing risks data using multiple endpoints," Biometrics, The International Biometric Society, vol. 79(3), pages 1635-1645, September.
    12. Qi Gong & Douglas E. Schaubel, 2017. "Estimating the average treatment effect on survival based on observational data and using partly conditional modeling," Biometrics, The International Biometric Society, vol. 73(1), pages 134-144, March.
    13. Min Zhang & Douglas E. Schaubel, 2011. "Estimating Differences in Restricted Mean Lifetime Using Observational Data Subject to Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 740-749, September.
    14. Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.
    15. Zahra Mansourvar & Torben Martinussen, 2017. "Estimation of average causal effect using the restricted mean residual lifetime as effect measure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 426-438, July.
    16. Rui Song & Michael R. Kosorok & Jianwen Cai, 2008. "Robust Covariate‐Adjusted Log‐Rank Statistics and Corresponding Sample Size Formula for Recurrent Events Data," Biometrics, The International Biometric Society, vol. 64(3), pages 741-750, September.
    17. Lu Mao, 2023. "On restricted mean time in favor of treatment," Biometrics, The International Biometric Society, vol. 79(1), pages 61-72, March.
    18. Ran Dai & Cheng Zheng & Mei-Jie Zhang, 2023. "On High-Dimensional Covariate Adjustment for Estimating Causal Effects in Randomized Trials with Survival Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 242-260, April.
    19. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    20. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:192-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.