IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i3d10.1007_s10985-016-9366-z.html
   My bibliography  Save this article

Estimation of average causal effect using the restricted mean residual lifetime as effect measure

Author

Listed:
  • Zahra Mansourvar

    (University of Copenhagen)

  • Torben Martinussen

    (University of Copenhagen)

Abstract

Although mean residual lifetime is often of interest in biomedical studies, restricted mean residual lifetime must be considered in order to accommodate censoring. Differences in the restricted mean residual lifetime can be used as an appropriate quantity for comparing different treatment groups with respect to their survival times. In observational studies where the factor of interest is not randomized, covariate adjustment is needed to take into account imbalances in confounding factors. In this article, we develop an estimator for the average causal treatment difference using the restricted mean residual lifetime as target parameter. We account for confounding factors using the Aalen additive hazards model. Large sample property of the proposed estimator is established and simulation studies are conducted in order to assess small sample performance of the resulting estimator. The method is also applied to an observational data set of patients after an acute myocardial infarction event.

Suggested Citation

  • Zahra Mansourvar & Torben Martinussen, 2017. "Estimation of average causal effect using the restricted mean residual lifetime as effect measure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 426-438, July.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:3:d:10.1007_s10985-016-9366-z
    DOI: 10.1007/s10985-016-9366-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9366-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9366-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Torben Martinussen & Thomas H. Scheike & Ib M. Skovgaard, 2002. "Efficient Estimation of Fixed and Time‐varying Covariate Effects in Multiplicative Intensity Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 57-74, March.
    2. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    3. Janez Stare & Robin Henderson & Maja Pohar, 2005. "An individual measure of relative survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 115-126, January.
    4. Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
    5. Min Zhang & Douglas E. Schaubel, 2011. "Estimating Differences in Restricted Mean Lifetime Using Observational Data Subject to Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 740-749, September.
    6. Murphy, S. A. & Sen, P. K., 1991. "Time-dependent coefficients in a Cox-type regression model," Stochastic Processes and their Applications, Elsevier, vol. 39(1), pages 153-180, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben Martinussen & Christian Bressen Pipper, 2014. "Estimation of Causal Odds of Concordance using the Aalen Additive Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 141-151, March.
    2. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    3. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    4. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    5. Yanqing Sun & Seunggeun Hyun & Peter Gilbert, 2008. "Testing and Estimation of Time-Varying Cause-Specific Hazard Ratios with Covariate Adjustment," Biometrics, The International Biometric Society, vol. 64(4), pages 1070-1079, December.
    6. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    7. Guoqing Diao & Anand N. Vidyashankar & Sarah Zohar & Sandrine Katsahian, 2021. "Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 142-159, April.
    8. Torben Martinussen & Odd O. Aalen & Thomas H. Scheike, 2008. "The Mizon–Richard Encompassing Test for the Cox and Aalen Additive Hazards Models," Biometrics, The International Biometric Society, vol. 64(1), pages 164-171, March.
    9. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    10. Chin-Tsang Chiang & Mei-Cheng Wang, 2009. "Varying-coefficient model for the occurrence rate function of recurrent events," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 197-213, March.
    11. X. Joan Hu & Rhonda J. Rosychuk, 2016. "Marginal regression analysis of recurrent events with coarsened censoring times," Biometrics, The International Biometric Society, vol. 72(4), pages 1113-1122, December.
    12. Yingchao Zhong & Douglas E. Schaubel, 2022. "Restricted mean survival time as a function of restriction time," Biometrics, The International Biometric Society, vol. 78(1), pages 192-201, March.
    13. Bhattacharjee, Arnab, 2009. "Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity," SIRE Discussion Papers 2009-22, Scottish Institute for Research in Economics (SIRE).
    14. Jiyang Wen & Chen Hu & Mei‐Cheng Wang, 2023. "Joint inference for competing risks data using multiple endpoints," Biometrics, The International Biometric Society, vol. 79(3), pages 1635-1645, September.
    15. Qi Gong & Douglas E. Schaubel, 2017. "Estimating the average treatment effect on survival based on observational data and using partly conditional modeling," Biometrics, The International Biometric Society, vol. 73(1), pages 134-144, March.
    16. Anderl, Eva & Schumann, Jan Hendrik & Kunz, Werner, 2016. "Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys," Journal of Retailing, Elsevier, vol. 92(2), pages 185-203.
    17. Zhiwei Zhang & Wei Li & Hui Zhang, 2020. "Efficient Estimation of Mann–Whitney-Type Effect Measures for Right-Censored Survival Outcomes in Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 246-262, July.
    18. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.
    19. Thomas H. Scheike & Mei-Jie Zhang, 2003. "Extensions and Applications of the Cox-Aalen Survival Model," Biometrics, The International Biometric Society, vol. 59(4), pages 1036-1045, December.
    20. Arnab Bhattacharjee, 2005. "Models of Firm Dynamics and the Hazard Rate of Exits: Reconciling Theory and Evidence using Hazard Regression Models," Econometrics 0503021, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:3:d:10.1007_s10985-016-9366-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.