IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i3p481-485.html
   My bibliography  Save this article

Choquet Insurance Pricing: A Caveat

Author

Listed:
  • Erio Castagnoli
  • Fabio Maccheroni
  • Massimo Marinacci

Abstract

We show that, if prices in a market are Choquet expectations, the existence of one frictionless asset may force the whole market to be frictionless. Any risky asset will cause this collapse if prices depend only on the distribution with respect to a given nonatomic probability measure; the frictionless asset has to be fully revealing if such dependence is not assumed. Similar considerations apply to law‐invariant coherent risk measures.

Suggested Citation

  • Erio Castagnoli & Fabio Maccheroni & Massimo Marinacci, 2004. "Choquet Insurance Pricing: A Caveat," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 481-485, July.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:3:p:481-485
    DOI: 10.1111/j.0960-1627.2004.00201.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00201.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00201.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chateauneuf, A. & Kast, R. & Lapied, A., 1992. "Choquet Pricing for Financial Markets with Frictions," G.R.E.Q.A.M. 92a11, Universite Aix-Marseille III.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    4. Massimo Marinacci, 2000. "A uniqueness theorem for convex-ranged probabilities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 23(2), pages 121-132.
    5. A. Chateauneuf & R. Kast & A. Lapied, 1996. "Choquet Pricing For Financial Markets With Frictions1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 323-330, July.
    6. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    2. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    3. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    4. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    5. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    6. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    7. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    8. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    9. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    10. Young, Virginia R. & Zariphopoulou, Thaleia, 2000. "Computation of distorted probabilities for diffusion processes via stochastic control methods," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 1-18, August.
    11. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    12. Castagnoli, Erio & Maccheroni, Fabio & Marinacci, Massimo, 2002. "Insurance premia consistent with the market," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 267-284, October.
    13. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.
    14. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    15. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    16. De Waegenaere, Anja & Kast, Robert & Lapied, Andre, 2003. "Choquet pricing and equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 359-370, July.
    17. Hurlimann, Werner, 2006. "A note on generalized distortion risk measures," Finance Research Letters, Elsevier, vol. 3(4), pages 267-272, December.
    18. Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
    19. Miryana Grigorova, 2011. "Stochastic dominance with respect to a capacity and risk measures," Working Papers hal-00639667, HAL.
    20. Yaarit Even & Ehud Lehrer, 2014. "Decomposition-integral: unifying Choquet and the concave integrals," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(1), pages 33-58, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:3:p:481-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.