IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v12y2002i1p71-87.html
   My bibliography  Save this article

Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability

Author

Listed:
  • DOMINICK SAMPERI

Abstract

A regularized (smoothed) version of the model calibration method of Avellaneda, Friedman, Holmes, and Samperi (1997) is studied. We prove that the regularized formulation is solvable and that the solution depends continuously on the input data (observed derivative security prices). Associated issues of model credibility, stability, and robustness (insensitivity to model assumptions) are discussed. The Implicit Function Theorem for Banach spaces is used for the stability proof, and some numerical illustrations are included.

Suggested Citation

  • Dominick Samperi, 2002. "Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 71-87, January.
  • Handle: RePEc:bla:mathfi:v:12:y:2002:i:1:p:71-87
    DOI: 10.1111/1467-9965.00005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00005
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Min & Tang, Ling & Yue, Xingye, 2016. "Calibration of stochastic volatility models: A Tikhonov regularization approach," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 66-81.
    2. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    3. Stavros J. Sioutis, 2017. "Calibration and Filtering of Exponential L\'evy Option Pricing Models," Papers 1705.04780, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    2. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    3. Liao Wang & David D. Yao, 2021. "Risk Hedging for Production Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1825-1837, June.
    4. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    5. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-22, October.
    6. Daniel Hernández-Hernández & Erick Treviño-Aguilar, 2014. "Characterization of the Value Process in Robust Efficient Hedging," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 56-75, April.
    7. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    8. Zhenyu Cui & Jun Deng, 2018. "Shortfall risk through Fenchel duality," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-14, June.
    9. F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
    10. Micha{l} Barski, 2014. "On the shortfall risk control -- a refinement of the quantile hedging method," Papers 1402.3725, arXiv.org, revised Dec 2015.
    11. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    12. Melnikov, Alexander & Tong, Shuo, 2014. "Valuation of finance/insurance contracts: Efficient hedging and stochastic interest rates modeling," Risk and Decision Analysis, IOS Press, issue 5, pages 23-41.
    13. Roxana Dumitrescu & Romuald Elie & Wissal Sabbagh & Chao Zhou, 2017. "A new Mertens decomposition of $\mathscr{Y}^{g,\xi}$-submartingale systems. Application to BSDEs with weak constraints at stopping times," Papers 1708.05957, arXiv.org, revised May 2023.
    14. Cyril B'en'ezet & Jean-Franc{c}ois Chassagneux & Mohan Yang, 2023. "An optimal transport approach for the multiple quantile hedging problem," Papers 2308.01121, arXiv.org.
    15. Adam W. Kolkiewicz, 2016. "Efficient Hedging Of Path–Dependent Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-27, August.
    16. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    17. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Hans Buhler & Lukas Gonon & Josef Teichmann & Ben Wood, 2018. "Deep Hedging," Papers 1802.03042, arXiv.org.
    19. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    20. Adrien Nguyen Huu & Nadia Oudjane, 2014. "Hedging Expected Losses on Derivatives in Electricity Futures Markets," Papers 1401.8271, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:12:y:2002:i:1:p:71-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.