IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v43y2022i3p460-478.html
   My bibliography  Save this article

Modeling normalcy‐dominant ordinal time series: An application to air quality level

Author

Listed:
  • Mengya Liu
  • Fukang Zhu
  • Ke Zhu

Abstract

Inspired by the study of air quality level data, this article proposes a new model for the normalcy‐dominant ordinal time series. The proposed model is based on a new zero‐one‐inflated bounded Poisson distribution with an autoregressive feedback mechanism in intensity. Under certain conditions, the stationarity and maximum likelihood estimation are established for the model. Moreover, a Lagrange multiplier test is constructed to detect the inflation phenomenon in the model. Applications find that the model can adequately capture the air quality level data in 30 major cities in China. More importantly, this article uses the fitted models to make the overall and dynamic air quality rankings for these cities, and finds that both rankings are rational and informative to the public.

Suggested Citation

  • Mengya Liu & Fukang Zhu & Ke Zhu, 2022. "Modeling normalcy‐dominant ordinal time series: An application to air quality level," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 460-478, May.
  • Handle: RePEc:bla:jtsera:v:43:y:2022:i:3:p:460-478
    DOI: 10.1111/jtsa.12625
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12625
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    3. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    4. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    5. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    6. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    7. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    8. Fukang Zhu, 2011. "A negative binomial integer‐valued GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 54-67, January.
    9. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    10. Christian Weiß & Rainer Göb, 2008. "Measuring serial dependence in categorical time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 71-89, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaping Chen, 2023. "A New Soft-Clipping Discrete Beta GARCH Model and Its Application on Measles Infection," Stats, MDPI, vol. 6(1), pages 1-19, February.
    2. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    2. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    3. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    4. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    5. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    7. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    8. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    9. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    10. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    11. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    12. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2017. "On periodic ergodicity of a general periodic mixed Poisson autoregression," MPRA Paper 79650, University Library of Munich, Germany.
    13. Mengya Liu & Qi Li & Fukang Zhu, 2020. "Self-excited hysteretic negative binomial autoregression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 385-415, September.
    14. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    15. Aknouche, Abdelhakim & Bentarzi, Wissam & Demouche, Nacer, 2018. "On periodic ergodicity of a general periodic mixed Poisson autoregression," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 15-21.
    16. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
    17. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    18. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    19. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    20. Aknouche, Abdelhakim & Demouche, Nacer, 2018. "Ergodicity conditions for a double mixed Poisson autoregression," MPRA Paper 88843, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:43:y:2022:i:3:p:460-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.