IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v36y2015i4p503-527.html
   My bibliography  Save this article

Infinitely Divisible Distributions in Integer-Valued Garch Models

Author

Listed:
  • E. Gonçalves
  • N. Mendes-Lopes
  • F. Silva

Abstract

type="main" xml:id="jtsa12112-abs-0001"> We propose an integer-valued stochastic process with conditional marginal distribution belonging to the class of infinitely divisible discrete probability laws. With this proposal, we introduce a wide class of models for count time series that includes the Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model (Ferland et al., 2006) and the negative binomial and generalized Poisson INGARCH models (Zhu, 2011, 2012a). The main probabilistic analysis of this process is developed stating, in particular, first-order and second-order stationarity conditions. The existence of a strictly stationary and ergodic solution is established in a subclass including the Poisson and generalized Poisson INGARCH models.

Suggested Citation

  • E. Gonçalves & N. Mendes-Lopes & F. Silva, 2015. "Infinitely Divisible Distributions in Integer-Valued Garch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 503-527, July.
  • Handle: RePEc:bla:jtsera:v:36:y:2015:i:4:p:503-527
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12112
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. René Ferland & Alain Latour & Driss Oraichi, 2006. "Integer‐Valued GARCH Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 923-942, November.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Fukang Zhu, 2011. "A negative binomial integer‐valued GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 54-67, January.
    5. Drost, Feike C. & van den Akker, Ramon & Werker, Bas J.M., 2008. "Note on integer-valued bilinear time series models," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 992-996, June.
    6. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    7. Christian Weiß, 2009. "Modelling time series of counts with overdispersion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 507-519, November.
    8. Xu, Hai-Yan & Xie, Min & Goh, Thong Ngee & Fu, Xiuju, 2012. "A model for integer-valued time series with conditional overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4229-4242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    3. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    4. Yue Xu & Fukang Zhu, 2022. "A new GJR‐GARCH model for ℤ‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 490-500, May.
    5. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.
    6. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    7. Qi Li & Fukang Zhu, 2020. "Mean targeting estimator for the integer-valued GARCH(1, 1) model," Statistical Papers, Springer, vol. 61(2), pages 659-679, April.
    8. Luiza S. C. Piancastelli & Wagner Barreto‐Souza & Hernando Ombao, 2023. "Flexible bivariate INGARCH process with a broad range of contemporaneous correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 206-222, March.
    9. Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    3. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    4. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    5. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    6. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    7. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    8. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    9. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    10. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    11. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    12. Cui, Yunwei & Wu, Rongning, 2016. "On conditional maximum likelihood estimation for INGARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 1-7.
    13. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.
    14. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.
    15. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    16. Jon Michel, 2020. "The Limiting Distribution of a Non‐Stationary Integer Valued GARCH(1,1) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 351-356, March.
    17. Hanan Elsaied & Roland Fried, 2014. "Robust Fitting Of Inarch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 517-535, November.
    18. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    19. Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    20. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:36:y:2015:i:4:p:503-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.