IDEAS home Printed from
   My bibliography  Save this article

Estimating the cure fraction in population-based cancer studies by using finite mixture models


  • P. C. Lambert
  • P. W. Dickman
  • C. L. Weston
  • J. R. Thompson


The cure fraction (the proportion of patients who are cured of disease) is of interest to both patients and clinicians and is a useful measure to monitor trends in survival of curable disease. The paper extends the non-mixture and mixture cure fraction models to estimate the proportion cured of disease in population-based cancer studies by incorporating a finite mixture of two Weibull distributions to provide more flexibility in the shape of the estimated relative survival or excess mortality functions. The methods are illustrated by using public use data from England and Wales on survival following diagnosis of cancer of the colon where interest lies in differences between age and deprivation groups. We show that the finite mixture approach leads to improved model fit and estimates of the cure fraction that are closer to the empirical estimates. This is particularly so in the oldest age group where the cure fraction is notably lower. The cure fraction is broadly similar in each deprivation group, but the median survival of the 'uncured' is lower in the more deprived groups. The finite mixture approach overcomes some of the limitations of the more simplistic cure models and has the potential to model the complex excess hazard functions that are seen in real data. Copyright (c) 2010 Royal Statistical Society.

Suggested Citation

  • P. C. Lambert & P. W. Dickman & C. L. Weston & J. R. Thompson, 2010. "Estimating the cure fraction in population-based cancer studies by using finite mixture models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 35-55.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:35-55

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    2. Paul C. Lambert, 2007. "Modeling of the cure fraction in survival studies," Stata Journal, StataCorp LP, vol. 7(3), pages 351-375, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Karri Seppä & Timo Hakulinen & Esa Läärä, 2014. "Regional variation in relative survival—quantifying the effects of the competing risks of death by using a cure fraction model with random effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 175-190, January.
    2. Therese M.-L. Andersson & Paul C. Lambert, 2012. "Fitting and modeling cure in population-based cancer studies within the framework of flexible parametric survival models," Stata Journal, StataCorp LP, vol. 12(4), pages 623-638, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:35-55. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.