IDEAS home Printed from
   My bibliography  Save this article

Statistical calibration of climate system properties


  • Bruno Sansó
  • Chris Forest


The behaviour of modern climate system simulators is controlled by numerous parameters. By matching model outputs with observed data we can perform inference on such parameters. This is a calibration problem that usually requires the ability to evaluate the computer code at any given configuration of the parameters. As the climate system simulator attempts to describe very complex physical phenomena, the task of running the model is very computationally demanding. Thus, a statistical model is required to approximate the model output. In this work, we use output from the Massachusetts Institute of Technology two-dimensional climate model (MIT2DCM), historical records and output from a three-dimensional climate model, to obtain estimates of the climate sensitivity, the effective thermal diffusivity in the deep ocean and the net aerosol forcing that control MIT2DCM. We use a Bayesian approach that allows for the use of scientifically based information on the climate parameters to be used in the calibration process. The model tackles the problem of dealing with multivariate computer model output and incorporates all estimation uncertainties into the posterior distributions of the climate parameters. Additionally we obtain estimates of the correlation structure of the unforced variability of temperature change patterns. These results are critical for understanding uncertainty in future climate change and provide an independent check that the information that is contained in recent climate change is robust to statistical treatment. These results include uncertainties in the estimation of the multivariate covariance matrices. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Bruno Sansó & Chris Forest, 2009. "Statistical calibration of climate system properties," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 485-503.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:485-503

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Claudia Tebaldi & Bruno Sansó, 2009. "Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 83-106.
    2. Higdon, Dave & Gattiker, James & Williams, Brian & Rightley, Maria, 2008. "Computer Model Calibration Using High-Dimensional Output," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 570-583, June.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Travaglini, Guido, 2014. "Testing the hockey-stick hypothesis by statistical analyses of a large dataset of proxy records," MPRA Paper 55835, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:485-503. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.