IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v172y2009i1p83-106.html
   My bibliography  Save this article

Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach

Author

Listed:
  • Claudia Tebaldi
  • Bruno Sansó

Abstract

Summary. Posterior distributions for the joint projections of future temperature and precipitation trends and changes are derived by applying a Bayesian hierachical model to a rich data set of simulated climate from general circulation models. The simulations that are analysed here constitute the future projections on which the Intergovernmental Panel on Climate Change based its recent summary report on the future of our planet's climate, albeit without any sophisticated statistical handling of the data. Here we quantify the uncertainty that is represented by the variable results of the various models and their limited ability to represent the observed climate both at global and at regional scales. We do so in a Bayesian framework, by estimating posterior distributions of the climate change signals in terms of trends or differences between future and current periods, and we fully characterize the uncertain nature of a suite of other parameters, like biases, correlation terms and model‐specific precisions. Besides presenting our results in terms of posterior distributions of the climate signals, we offer as an alternative representation of the uncertainties in climate change projections the use of the posterior predictive distribution of a new model's projections. The results from our analysis can find straightforward applications in impact studies, which necessitate not only best guesses but also a full representation of the uncertainty in climate change projections. For water resource and crop models, for example, it is vital to use joint projections of temperature and precipitation to represent the characteristics of future climate best, and our statistical analysis delivers just that.

Suggested Citation

  • Claudia Tebaldi & Bruno Sansó, 2009. "Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 83-106, January.
  • Handle: RePEc:bla:jorssa:v:172:y:2009:i:1:p:83-106
    DOI: 10.1111/j.1467-985X.2008.00545.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2008.00545.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2008.00545.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    2. Bruno Sansó & Chris Forest, 2009. "Statistical calibration of climate system properties," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 485-503, September.
    3. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    4. Roman Olson & Soon-Il An & Yanan Fan & Jason P Evans, 2019. "Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-24, April.
    5. Richard H. Moss, 2016. "Assessing decision support systems and levels of confidence to narrow the climate information “usability gap”," Climatic Change, Springer, vol. 135(1), pages 143-155, March.
    6. Xie, Yalin & Lei, Xiangdong & Shi, Jingning, 2020. "Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model," Ecological Modelling, Elsevier, vol. 435(C).
    7. Christoph M. Buser & Hans R. Künsch & Alain Weber, 2010. "Biases and Uncertainty in Climate Projections," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 179-199, June.
    8. Richard Moss, 2016. "Assessing decision support systems and levels of confidence to narrow the climate information “usability gap”," Climatic Change, Springer, vol. 135(1), pages 143-155, March.
    9. Jang Hyun Sung & Minsung Kwon & Jong-June Jeon & Seung Beom Seo, 2019. "A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    10. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    11. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    12. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.
    13. Esther Salazar & Dorit Hammerling & Xia Wang & Bruno Sansó & Andrew O. Finley & Linda O. Mearns, 2016. "Observation-based blended projections from ensembles of regional climate models," Climatic Change, Springer, vol. 138(1), pages 55-69, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:172:y:2009:i:1:p:83-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.