IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v72y2021i7p853-869.html
   My bibliography  Save this article

Algorithmic labeling in hierarchical classifications of publications: Evaluation of bibliographic fields and term weighting approaches

Author

Listed:
  • Peter Sjögårde
  • Per Ahlgren
  • Ludo Waltman

Abstract

Algorithmic classifications of research publications can be used to study many different aspects of the science system, such as the organization of science into fields, the growth of fields, interdisciplinarity, and emerging topics. How to label the classes in these classifications is a problem that has not been thoroughly addressed in the literature. In this study, we evaluate different approaches to label the classes in algorithmically constructed classifications of research publications. We focus on two important choices: the choice of (a) different bibliographic fields and (b) different approaches to weight the relevance of terms. To evaluate the different choices, we created two baselines: one based on the Medical Subject Headings in MEDLINE and another based on the Science‐Metrix journal classification. We tested to what extent different approaches yield the desired labels for the classes in the two baselines. Based on our results, we recommend extracting terms from titles and keywords to label classes at high levels of granularity (e.g., topics). At low levels of granularity (e.g., disciplines) we recommend extracting terms from journal names and author addresses. We recommend the use of a new approach, term frequency to specificity ratio, to calculate the relevance of terms.

Suggested Citation

  • Peter Sjögårde & Per Ahlgren & Ludo Waltman, 2021. "Algorithmic labeling in hierarchical classifications of publications: Evaluation of bibliographic fields and term weighting approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(7), pages 853-869, July.
  • Handle: RePEc:bla:jinfst:v:72:y:2021:i:7:p:853-869
    DOI: 10.1002/asi.24452
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24452
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Theresa Velden & Shiyan Yan & Carl Lagoze, 2017. "Mapping the cognitive structure of astrophysics by infomap clustering of the citation network and topic affinity analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1033-1051, May.
    2. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    3. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    4. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    5. Per Ahlgren & Cristian Colliander & Peter Sjögårde, 2018. "Exploring the relation between referencing practices and citation impact: A large†scale study based on Web of Science data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(5), pages 728-743, May.
    6. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    7. Richard Klavans & Kevin W. Boyack, 2017. "Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 984-998, April.
    8. Rob Koopman & Shenghui Wang & Andrea Scharnhorst, 2017. "Contextualization of topics: browsing through the universe of bibliographic information," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1119-1139, May.
    9. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    10. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    11. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    2. Haunschild, Robin & Daniels, Angela D. & Bornmann, Lutz, 2022. "Scores of a specific field-normalized indicator calculated with different approaches of field-categorization: Are the scores different or similar?," Journal of Informetrics, Elsevier, vol. 16(1).
    3. Juan Pablo Bascur & Suzan Verberne & Nees Jan Eck & Ludo Waltman, 2023. "Academic information retrieval using citation clusters: in-depth evaluation based on systematic reviews," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2895-2921, May.
    4. Gerson Pech & Catarina Delgado & Silvio Paolo Sorella, 2022. "Classifying papers into subfields using Abstracts, Titles, Keywords and KeyWords Plus through pattern detection and optimization procedures: An application in Physics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(11), pages 1513-1528, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    2. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    3. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    4. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    5. Kevin W. Boyack, 2017. "Investigating the effect of global data on topic detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 999-1015, May.
    6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    8. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.
    9. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.
    10. Shu, Fei & Julien, Charles-Antoine & Zhang, Lin & Qiu, Junping & Zhang, Jing & Larivière, Vincent, 2019. "Comparing journal and paper level classifications of science," Journal of Informetrics, Elsevier, vol. 13(1), pages 202-225.
    11. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    12. Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
    13. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    14. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    15. Natalya Ivanova & Ekaterina Zolotova, 2023. "Landolt Indicator Values in Modern Research: A Review," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    16. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2020. "An extensive analysis of the presence of altmetric data for Web of Science publications across subject fields and research topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2519-2549, September.
    17. Haunschild, Robin & Daniels, Angela D. & Bornmann, Lutz, 2022. "Scores of a specific field-normalized indicator calculated with different approaches of field-categorization: Are the scores different or similar?," Journal of Informetrics, Elsevier, vol. 16(1).
    18. Sukrit Vinayavekhin & Feng Li & Aneesh Banerjee & Andrea Caputo, 2023. "The academic landscape of sustainability in management literature: Towards a more interdisciplinary research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5748-5784, December.
    19. Yi Zhang & Xiaojing Cai & Caroline V. Fry & Mengjia Wu & Caroline S. Wagner, 2021. "Topic evolution, disruption and resilience in early COVID-19 research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4225-4253, May.
    20. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:72:y:2021:i:7:p:853-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.