IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i6p1617-1630.html
   My bibliography  Save this article

Intensified production of zeolite A: Life cycle assessment of a continuous flow pilot plant and comparison with a conventional batch plant

Author

Listed:
  • Fabio Grimaldi
  • Heidy Ramirez
  • Cécile Lutz
  • Paola Lettieri

Abstract

This study investigates on the environmental impact of an intensified technology for the manufacturing of Zeolite A, one of the largest zeolites employed worldwide by volume and value. The technology under consideration is an oscillatory continuous‐flow synthesis, developed industrially by Arkema, and currently at pilot‐scale. Life cycle assessment (LCA) is used in this work to measure the sustainability of this emerging technology in an anticipatory fashion, before its full deployment, with the aim of driving the process development toward the minimization of the environmental footprint. The assessment explores the full life‐cycle of the production system and comprises comparative analysis, scenario analysis, and a hotspot analysis. Finally, the continuous‐flow technology is benchmarked against the environmental impact of a conventional batch production of zeolite A, based on a full‐scale commercial plant. The results evidence that significant benefits would stem from shifting from batch to continuous‐flow production. The comparative analysis reveals that the extent of the latter advantages depends on the impact category under consideration and directs the next steps of CF system's process development toward pivotal aspects such as the recirculation system to further reduce the system's environmental impacts. Regardless of the chosen production technology, a large share of the total environmental impact hinges on the production of NaOH, a building block of the synthesis, and hence is hardly mitigatable. On the whole, the findings of this work emphasize the need of prioritizing LCA during the development phase of emerging technologies and underline its efficacy to prevent waste of resources and capitals.

Suggested Citation

  • Fabio Grimaldi & Heidy Ramirez & Cécile Lutz & Paola Lettieri, 2021. "Intensified production of zeolite A: Life cycle assessment of a continuous flow pilot plant and comparison with a conventional batch plant," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1617-1630, December.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:6:p:1617-1630
    DOI: 10.1111/jiec.13180
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13180
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joule A. Bergerson & Adam Brandt & Joe Cresko & Michael Carbajales‐Dale & Heather L. MacLean & H. Scott Matthews & Sean McCoy & Marcelle McManus & Shelie A. Miller & William R. Morrow & I. Daniel Pose, 2020. "Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 11-25, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    2. Chris Kennedy & Reid Lifset, 2021. "Winners of the 2020 Graedel prizes: The Journal of Industrial Ecology best paper prizes," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1108-1110, October.
    3. Paul Baustert & Elorri Igos & Thomas Schaubroeck & Laurent Chion & Angelica Mendoza Beltran & Elke Stehfest & Detlef van Vuuren & Hester Biemans & Enrico Benetto, 2022. "Integration of future water scarcity and electricity supply into prospective LCA: Application to the assessment of water desalination for the steel industry," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1182-1194, August.
    4. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    5. Naroa Coretti Sanchez & Luis Alonso Pastor & Kent Larson, 2022. "Can autonomy make bicycle-sharing systems more sustainable? Environmental impact analysis of an emerging mobility technology," Papers 2202.12405, arXiv.org.
    6. Elizaveta Averina & Johan Frishammar & Vinit Parida, 2022. "Assessing sustainability opportunities for circular business models," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1464-1487, May.
    7. Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.
    8. Roel J. K. Helmes & Pietro Goglio & Silvia Salomoni & Daan S. van Es & Iris Vural Gursel & Lusine Aramyan, 2022. "Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    9. Yang Qiu & Patrick Lamers & Vassilis Daioglou & Noah McQueen & Harmen-Sytze Boer & Mathijs Harmsen & Jennifer Wilcox & André Bardow & Sangwon Suh, 2022. "Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. André Souza Oliveira & Bruno Caetano dos Santos Silva & Cristiano Vasconcellos Ferreira & Renelson Ribeiro Sampaio & Bruna Aparecida Souza Machado & Rodrigo Santiago Coelho, 2021. "Adding Technology Sustainability Evaluation to Product Development: A Proposed Methodology and an Assessment Model," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:6:p:1617-1630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.