IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v15y2011i6p908-921.html
   My bibliography  Save this article

Life Cycle Assessment of Biomass‐based Combined Heat and Power Plants

Author

Listed:
  • Geoffrey Guest
  • Ryan M. Bright
  • Francesco Cherubini
  • Ottar Michelsen
  • Anders Hammer Strømman

Abstract

Norway, like many countries, has realized the need to extensively plan its renewable energy future sooner rather than later. Combined heat and power (CHP) through gasification of forest residues is one technology that is expected to aid Norway in achieving a desired doubling of bioenergy production by 2020. To assess the environmental impacts to determine the most suitable CHP size, we performed a unit process‐based attributional life cycle assessment (LCA), in which we compared three scales of CHP over ten environmental impact categories—micro (0.1 megawatts electricity [MWe]), small (1 MWe), and medium (50 MWe) scale. The functional units used were 1 megajoule (MJ) of electricity and 1 MJ of district heating delivered to the end user (two functional units), and therefore, the environmental impacts from distribution of electricity and hot water to the consumer were also considered. This study focuses on a regional perspective situated in middle‐Norway's Nord‐ and Sør‐Trøndelag counties. Overall, the unit‐based environmental impacts between the scales of CHP were quite mixed and within the same magnitude. The results indicated that energy distribution from CHP plant to end user creates from less than 1% to nearly 90% of the total system impacts, depending on impact category and energy product. Also, an optimal small‐scale CHP plant may be the best environmental option. The CHP systems had a global warming potential ranging from 2.4 to 2.8 grams of carbon dioxide equivalent per megajoule of thermal (g CO2‐eq/MJth) district heating and from 8.8 to 10.5 grams carbon dioxide equivalent per megajoule of electricity (g CO2‐eq/MJel) to the end user.

Suggested Citation

  • Geoffrey Guest & Ryan M. Bright & Francesco Cherubini & Ottar Michelsen & Anders Hammer Strømman, 2011. "Life Cycle Assessment of Biomass‐based Combined Heat and Power Plants," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 908-921, December.
  • Handle: RePEc:bla:inecol:v:15:y:2011:i:6:p:908-921
    DOI: 10.1111/j.1530-9290.2011.00375.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2011.00375.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2011.00375.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    2. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    4. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    5. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    6. Ardolino, Filomena & Lodato, Concetta & Astrup, Thomas F. & Arena, Umberto, 2018. "Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model," Energy, Elsevier, vol. 165(PB), pages 299-314.
    7. Ivner, Jenny & Broberg Viklund, Sarah, 2015. "Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 81-87.
    8. Wiesberg, Igor Lapenda & de Medeiros, José Luiz & Paes de Mello, Raphael V. & Santos Maia, Jeiveison G.S. & Bastos, João Bruno V. & Araújo, Ofélia de Queiroz F., 2021. "Bioenergy production from sugarcane bagasse with carbon capture and storage: Surrogate models for techno-economic decisions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Boschiero, Martina & Kelderer, Markus & Schmitt, Armin O. & Andreotti, Carlo & Zerbe, Stefan, 2015. "Influence of agricultural residues interpretation and allocation procedures on the environmental performance of bioelectricity production – A case study on woodchips from apple orchards," Applied Energy, Elsevier, vol. 147(C), pages 235-245.
    10. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    11. Otavio Cavalett & Sigurd Norem Slettmo & Francesco Cherubini, 2018. "Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    12. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    13. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    14. Wang, H. & Bi, X. & Clift, R., 2021. "Utilization of forestry waste materials in British Columbia: Options and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    16. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    17. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    18. Cleary, Julian & Caspersen, John P., 2015. "Comparing the life cycle impacts of using harvest residue as feedstock for small- and large-scale bioenergy systems (part I)," Energy, Elsevier, vol. 88(C), pages 917-926.
    19. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
    20. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:15:y:2011:i:6:p:908-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.