IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p2857-2868.html
   My bibliography  Save this article

SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials

Author

Listed:
  • Peng Yang
  • Yuansong Zhao
  • Lei Nie
  • Jonathon Vallejo
  • Ying Yuan

Abstract

Mixture priors provide an intuitive way to incorporate historical data while accounting for potential prior‐data conflict by combining an informative prior with a noninformative prior. However, prespecifying the mixing weight for each component remains a crucial challenge. Ideally, the mixing weight should reflect the degree of prior‐data conflict, which is often unknown beforehand, posing a significant obstacle to the application and acceptance of mixture priors. To address this challenge, we introduce self‐adapting mixture (SAM) priors that determine the mixing weight using likelihood ratio test statistics or Bayes factors. SAM priors are data‐driven and self‐adapting, favoring the informative (noninformative) prior component when there is little (substantial) evidence of prior‐data conflict. Consequently, SAM priors achieve dynamic information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite and large samples and achieve information‐borrowing consistency. Moreover, SAM priors are easy to compute, data‐driven, and calibration‐free, mitigating the risk of data dredging. Numerical studies show that SAM priors outperform existing methods in adopting prior‐data conflicts effectively. We developed R package “SAMprior” and web application that are freely available at CRAN and www.trialdesign.org to facilitate the use of SAM priors.

Suggested Citation

  • Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2857-2868
    DOI: 10.1111/biom.13927
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13927
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    2. Julia R. Falconer & Eibe Frank & Devon L. L. Polaschek & Chaitanya Joshi, 2022. "Methods for Eliciting Informative Prior Distributions: A Critical Review," Decision Analysis, INFORMS, vol. 19(3), pages 189-204, September.
    3. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    4. Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
    5. Manuel Wiesenfarth & Silvia Calderazzo, 2020. "Quantification of prior impact in terms of effective current sample size," Biometrics, The International Biometric Society, vol. 76(1), pages 326-336, March.
    6. Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    2. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    3. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    4. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    5. Alexander Kaizer & John Kittelson, 2020. "Discussion on “Predictively Consistent Prior Effective Sample Sizes” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 588-590, June.
    6. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    7. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    8. Andrea Arfè & Brian Alexander & Lorenzo Trippa, 2021. "Optimality of testing procedures for survival data in the nonproportional hazards setting," Biometrics, The International Biometric Society, vol. 77(2), pages 587-598, June.
    9. Moreno Ursino & Nigel Stallard, 2021. "Bayesian Approaches for Confirmatory Trials in Rare Diseases: Opportunities and Challenges," IJERPH, MDPI, vol. 18(3), pages 1-9, January.
    10. Roland Brown & Yingling Fan & Kirti Das & Julian Wolfson, 2021. "Iterated multisource exchangeability models for individualized inference with an application to mobile sensor data," Biometrics, The International Biometric Society, vol. 77(2), pages 401-412, June.
    11. Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
    12. Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
    13. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    14. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    15. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    16. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    17. Emma Gerard & Sarah Zohar & Hoai‐Thu Thai & Christelle Lorenzato & Marie‐Karelle Riviere & Moreno Ursino, 2022. "Bayesian dose regimen assessment in early phase oncology incorporating pharmacokinetics and pharmacodynamics," Biometrics, The International Biometric Society, vol. 78(1), pages 300-312, March.
    18. Ghaderinezhad, Fatemeh & Ley, Christophe & Serrien, Ben, 2022. "The Wasserstein Impact Measure (WIM): A practical tool for quantifying prior impact in Bayesian statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    19. Adam Fleischhacker & Pak-Wing Fok & Mokshay Madiman & Nan Wu, 2023. "A Closed-Form EVSI Expression for a Multinomial Data-Generating Process," Decision Analysis, INFORMS, vol. 20(1), pages 73-84, March.
    20. Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:2857-2868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.