IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3612-3623.html
   My bibliography  Save this article

Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy

Author

Listed:
  • Sidi Wang
  • Kelley M. Kidwell
  • Satrajit Roychoudhury

Abstract

In Duchenne muscular dystrophy (DMD) and other rare diseases, recruiting patients into clinical trials is challenging. Additionally, assigning patients to long‐term, multi‐year placebo arms raises ethical and trial retention concerns. This poses a significant challenge to the traditional sequential drug development paradigm. In this paper, we propose a small‐sample, sequential, multiple assignment, randomized trial (snSMART) design that combines dose selection and confirmatory assessment into a single trial. This multi‐stage design evaluates the effects of multiple doses of a promising drug and re‐randomizes patients to appropriate dose levels based on their Stage 1 dose and response. Our proposed approach increases the efficiency of treatment effect estimates by (i) enriching the placebo arm with external control data, and (ii) using data from all stages. Data from external control and different stages are combined using a robust meta‐analytic combined (MAC) approach to consider the various sources of heterogeneity and potential selection bias. We reanalyze data from a DMD trial using the proposed method and external control data from the Duchenne Natural History Study (DNHS). Our method's estimators show improved efficiency compared to the original trial. Also, the robust MAC‐snSMART method most often provides more accurate estimators than the traditional analytic method. Overall, the proposed methodology provides a promising candidate for efficient drug development in DMD and other rare diseases.

Suggested Citation

  • Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3612-3623
    DOI: 10.1111/biom.13887
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13887
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beat Neuenschwander & Sebastian Weber & Heinz Schmidli & Anthony O'Hagan, 2020. "Predictively consistent prior effective sample sizes," Biometrics, The International Biometric Society, vol. 76(2), pages 578-587, June.
    2. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    3. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    4. Luke O. Ouma & Michael J. Grayling & James M. S. Wason & Haiyan Zheng, 2022. "Bayesian modelling strategies for borrowing of information in randomised basket trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 2014-2037, November.
    5. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    2. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    3. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    4. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    5. Lanju Zhang & Zailong Wang & Li Wang & Lu Cui & Jeremy Sokolove & Ivan Chan, 2022. "A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 216-236, July.
    6. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    7. Chenguang Wang & Min Lin & Gary L. Rosner & Guoxing Soon, 2023. "A Bayesian model with application for adaptive platform trials having temporal changes," Biometrics, The International Biometric Society, vol. 79(2), pages 1446-1458, June.
    8. Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
    9. Macrì Demartino, Roberto & Egidi, Leonardo & Torelli, Nicola & Ntzoufras, Ioannis, 2025. "Eliciting prior information from clinical trials via calibrated Bayes factor," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
    10. Danila Azzolina & Giulia Lorenzoni & Silvia Bressan & Liviana Da Dalt & Ileana Baldi & Dario Gregori, 2021. "Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    11. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    12. Arnaud Monseur & Bradley P. Carlin & Bruno Boulanger & Andreea Seferian & Laurent Servais & Chris Freitag & Leen Thielemans, 2022. "Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 237-258, July.
    13. Moreno Ursino & Nigel Stallard, 2021. "Bayesian Approaches for Confirmatory Trials in Rare Diseases: Opportunities and Challenges," IJERPH, MDPI, vol. 18(3), pages 1-9, January.
    14. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    15. Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
    16. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    17. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    18. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    19. Qingyang Liu & Junxian Geng & Frank Fleischer & Qiqi Deng, 2022. "Efficacy-Driven Dose Finding with Toxicity Control in Phase I Oncology Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 413-431, December.
    20. Atanu Biswas & Jean‐François Angers, 2020. "Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 591-594, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3612-3623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.