IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p811-825.html
   My bibliography  Save this article

Selective prediction‐set models with coverage rate guarantees

Author

Listed:
  • Jean Feng
  • Arjun Sondhi
  • Jessica Perry
  • Noah Simon

Abstract

The current approach to using machine learning (ML) algorithms in healthcare is to either require clinician oversight for every use case or use their predictions without any human oversight. We explore a middle ground that lets ML algorithms abstain from making a prediction to simultaneously improve their reliability and reduce the burden placed on human experts. To this end, we present a general penalized loss minimization framework for training selective prediction‐set (SPS) models, which choose to either output a prediction set or abstain. The resulting models abstain when the outcome is difficult to predict accurately, such as on subjects who are too different from the training data, and achieve higher accuracy on those they do give predictions for. We then introduce a model‐agnostic, statistical inference procedure for the coverage rate of an SPS model that ensembles individual models trained using K‐fold cross‐validation. We find that SPS ensembles attain prediction‐set coverage rates closer to the nominal level and have narrower confidence intervals for its marginal coverage rate. We apply our method to train neural networks that abstain more for out‐of‐sample images on the MNIST digit prediction task and achieve higher predictive accuracy for ICU patients compared to existing approaches.

Suggested Citation

  • Jean Feng & Arjun Sondhi & Jessica Perry & Noah Simon, 2023. "Selective prediction‐set models with coverage rate guarantees," Biometrics, The International Biometric Society, vol. 79(2), pages 811-825, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:811-825
    DOI: 10.1111/biom.13612
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13612
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Lei & Larry Wasserman, 2014. "Distribution-free prediction bands for non-parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 71-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    2. Leying Guan, 2023. "Localized conformal prediction: a generalized inference framework for conformal prediction," Biometrika, Biometrika Trust, vol. 110(1), pages 33-50.
    3. João A. Bastos, 2023. "Conformal prediction of option prices," Working Papers REM 2023/0304, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    4. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
    5. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2018. "Exact and robust conformal inference methods for predictive machine learning with dependent data," CeMMAP working papers CWP16/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Zhang, Yingying & Shi, Chengchun & Luo, Shikai, 2023. "Conformal off-policy prediction," LSE Research Online Documents on Economics 118250, London School of Economics and Political Science, LSE Library.
    7. David J. Olive, 2018. "Applications of hyperellipsoidal prediction regions," Statistical Papers, Springer, vol. 59(3), pages 913-931, September.
    8. Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    9. Algo Carè & Simone Garatti & Marco C. Campi, 2017. "A coverage theory for least squares," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1367-1389, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:811-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.