IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i3p707-716.html
   My bibliography  Save this article

Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data

Author

Listed:
  • Yu-Jen Cheng
  • Mei-Cheng Wang

Abstract

No abstract is available for this item.

Suggested Citation

  • Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:707-716
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2012.01754.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin J. Anstrom & Anastasios A. Tsiatis, 2001. "Utilizing Propensity Scores to Estimate Causal Treatment Effects with Censored Time-Lagged Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1207-1218, December.
    2. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    3. Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
    4. Bergeron, Pierre-Jerome & Asgharian, Masoud & Wolfson, David B., 2008. "Covariate Bias Induced by Length-Biased Sampling of Failure Times," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 737-742, June.
    5. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    6. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    7. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    8. Rose Sherri & van der Laan Mark J., 2009. "Why Match? Investigating Matched Case-Control Study Designs with Causal Effect Estimation," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-26, January.
    9. Xiaodong Luo & Wei Yann Tsai, 2009. "Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach," Biometrika, Biometrika Trust, vol. 96(4), pages 873-886.
    10. Kung‐Yee Liang & Jing Qin, 2000. "Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 773-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Jen Cheng & Mei-Cheng Wang, 2015. "Causal estimation using semiparametric transformation models under prevalent sampling," Biometrics, The International Biometric Society, vol. 71(2), pages 302-312, June.
    2. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2015. "Double Bias: Estimation of Causal Effects from Length-Biased Samples in the Presence of Confounding," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 69-89, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    2. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2015. "Double Bias: Estimation of Causal Effects from Length-Biased Samples in the Presence of Confounding," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 69-89, May.
    3. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    4. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    5. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    6. James J. Heckman, 1991. "Randomization and Social Policy Evaluation Revisited," NBER Technical Working Papers 0107, National Bureau of Economic Research, Inc.
    7. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    8. James J. Heckman, 1991. "Randomization and Social Policy Evaluation Revisited," NBER Technical Working Papers 0107, National Bureau of Economic Research, Inc.
    9. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    10. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    11. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2012. "Estimating Incident Population Distribution from Prevalent Data," Biometrics, The International Biometric Society, vol. 68(2), pages 521-531, June.
    12. Jacobo Uña-Álvarez, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 414-418, September.
    13. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    14. Lin, Cunjie & Zhou, Yong, 2014. "Analyzing right-censored and length-biased data with varying-coefficient transformation model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 45-63.
    15. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    16. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    17. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    18. Zhang, Feipeng & Peng, Heng & Zhou, Yong, 2016. "Composite partial likelihood estimation for length-biased and right-censored data with competing risks," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 160-176.
    19. Zexi Cai & Tony Sit, 2020. "Censored quantile regression model with time‐varying covariates under length‐biased sampling," Biometrics, The International Biometric Society, vol. 76(4), pages 1201-1215, December.
    20. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:3:p:707-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.