IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v67y2011i1p323-325.html
   My bibliography  Save this article

The authors replied as follows:

Author

Listed:
  • Jing Cheng

Abstract

No abstract is available for this item.

Suggested Citation

  • Jing Cheng, 2011. "The authors replied as follows:," Biometrics, The International Biometric Society, vol. 67(1), pages 323-325, March.
  • Handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:323-325
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01451_2.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Cheng & Dylan S. Small & Zhiqiang Tan & Thomas R. Ten Have, 2009. "Efficient nonparametric estimation of causal effects in randomized trials with noncompliance," Biometrika, Biometrika Trust, vol. 96(1), pages 19-36.
    2. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    3. Jing Cheng, 2009. "Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome," Biometrics, The International Biometric Society, vol. 65(1), pages 96-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    2. Stuart G. Baker, 2011. "Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome: An Alternative Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 319-323, March.
    3. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    4. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    5. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    6. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    7. Jiannan Lu & Yunshu Zhang & Peng Ding, 2020. "Sharp bounds on the relative treatment effect for ordinal outcomes," Biometrics, The International Biometric Society, vol. 76(2), pages 664-669, June.
    8. Lu, Jiannan & Ding, Peng & Dasgupta, Tirthankar, 2015. "Construction of alternative hypotheses for randomization tests with ordinal outcomes," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 348-355.
    9. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    10. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    11. Jing Cheng & Dylan S. Small, 2021. "Semiparametric models and inference for the effect of a treatment when the outcome is nonnegative with clumping at zero," Biometrics, The International Biometric Society, vol. 77(4), pages 1187-1201, December.
    12. G. Baker Stuart & S. Lindeman Karen, 2013. "Revisiting a Discrepant Result: A Propensity Score Analysis, the Paired Availability Design for Historical Controls, and a Meta-Analysis of Randomized Trials," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 51-82, June.
    13. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: Evidence from an instrumental variable analysis of China's One-Child Policy," Papers 2005.09130, arXiv.org, revised Jun 2020.
    14. Fan Yang & José R. Zubizarreta & Dylan S. Small & Scott Lorch & Paul R. Rosenbaum, 2014. "Dissonant Conclusions When Testing the Validity of an Instrumental Variable," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 253-263, November.
    15. Alan Agresti & Maria Kateri, 2017. "Ordinal probability effect measures for group comparisons in multinomial cumulative link models," Biometrics, The International Biometric Society, vol. 73(1), pages 214-219, March.
    16. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    17. Ertefaie Ashkan & Small Dylan & Flory James & Hennessy Sean, 2016. "Selection Bias When Using Instrumental Variable Methods to Compare Two Treatments But More Than Two Treatments Are Available," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 219-232, May.
    18. Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.
    19. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    20. Alessandra Mattei & Fabrizia Mealli & Barbara Pacini, 2014. "Identification of causal effects in the presence of nonignorable missing outcome values," Biometrics, The International Biometric Society, vol. 70(2), pages 278-288, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:67:y:2011:i:1:p:323-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.