IDEAS home Printed from
   My bibliography  Save this article

Some New Estimators for Small-Area Means with Application to the Assessment of Farmland Values


  • Pfeffermann, Danny
  • Barnard, Charles H


Regression models that account for main state effects and nested county effects are considered for the assessment of farmland values. Empirical predictors obtained by replacing the unknown variances in the formula of the optimal predictors by maximum likelihood estimates are presented. The computations are carried out by simple iterations between two SAS procedures. Estimators for the prediction variances are derived, and a modification to secure the robustness of the predictors is proposed. The procedure is applied to data on nonirrigated cropland in the Corn Belt states and is shown to yield predictors with considerably lower predictions mean squared errors than the survey estimators and other regression-type estimators.

Suggested Citation

  • Pfeffermann, Danny & Barnard, Charles H, 1991. "Some New Estimators for Small-Area Means with Application to the Assessment of Farmland Values," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 73-84, January.
  • Handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:73-84

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Alex Costa & Albert Satorra & Eva Ventura, 2003. "An Empirical Evaluation of Five Small Area Estimators," General Economics and Teaching 0312003, University Library of Munich, Germany.
    2. Àlex Costa & Albert Satorra & Eva Ventura, 2003. "An empirical evaluation of small area estimators," Economics Working Papers 674, Department of Economics and Business, Universitat Pompeu Fabra, revised Jun 2003.
    3. Malay Ghosh & Tatsuya Kubokawa & Yuki Kawakubo, 2014. "Benchmarked Empirical Bayes Methods in Multiplicative Area-level Models with Risk Evaluation," CIRJE F-Series CIRJE-F-918, CIRJE, Faculty of Economics, University of Tokyo.
    4. Àlex Costa & Albert Satorra & Eva Ventura, 2001. "Estimadores compuestos en estadística regional: aplicación para la tasa de variación de la ocupación en la industria," Economics Working Papers 590, Department of Economics and Business, Universitat Pompeu Fabra.
    5. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
    6. M. D. Ugarte & A. F. Militino & T. Goicoa, 2008. "Adjusting economic estimates in business surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1253-1265.
    7. G. Datta & M. Ghosh & R. Steorts & J. Maples, 2011. "Bayesian benchmarking with applications to small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 574-588, November.
    8. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    9. Ryan Janicki & Andrew Vesper, 2017. "Benchmarking techniques for reconciling Bayesian small area models at distinct geographic levels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 557-581, November.
    10. Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:73-84. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.