IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

To How Many Simultaneous Hypothesis Tests Can Normal, Student's t or Bootstrap Calibration Be Applied?

Listed author(s):
  • Fan, Jianqing
  • Hall, Peter
  • Yao, Qiwei

In the analysis of microarray data, and in some other contemporary statistical problems, it is not uncommon to apply hypothesis tests in a highly simultaneous way. The number, N say, of tests used can be much larger than the sample sizes, n, to which the tests are applied, yet we wish to calibrate the tests so that the overall level of the simultaneous test is accurate. Often the sampling distribution is quite different for each test, so there may not be an opportunity to combine data across samples. In this setting, how large can N be, as a function of n, before level accuracy becomes poor? Here we answer this question in cases where the statistic under test is of Student's t type. We show that if either the normal or Student t distribution is used for calibration, then the level of the simultaneous test is accurate provided that log N increases at a strictly slower rate than n1/3 as n diverges. On the other hand, if bootstrap methods are used for calibration, then we may choose log N almost as large as n1/2 and still achieve asymptotic-level accuracy. The implications of these results are explored both theoretically and numerically.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by American Statistical Association in its journal Journal of the American Statistical Association.

Volume (Year): 102 (2007)
Issue (Month): (December)
Pages: 1282-1288

in new window

Handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1282-1288
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
  2. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1282-1288. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.