IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v100y2005p359-369.html
   My bibliography  Save this article

Hidden Markov Models for Longitudinal Comparisons

Author

Listed:
  • Scott, Steven L.
  • James, Gareth M.
  • Sugar, Catherine A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Scott, Steven L. & James, Gareth M. & Sugar, Catherine A., 2005. "Hidden Markov Models for Longitudinal Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 359-369, June.
  • Handle: RePEc:bes:jnlasa:v:100:y:2005:p:359-369
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2005/00000100/00000470/art00001
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyuan Song & Yemao Xia & Hongtu Zhu, 2017. "Hidden Markov latent variable models with multivariate longitudinal data," Biometrics, The International Biometric Society, vol. 73(1), pages 313-323, March.
    2. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
    3. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    4. Edward H. Ip & Alison Snow Jones & D. Alex Heckert & Qiang Zhang & Edward D. Gondolf, 2010. "Latent Markov Model for Analyzing Temporal Configuration for Violence Profiles and Trajectories in a Sample of Batterers," Sociological Methods & Research, , vol. 39(2), pages 222-255, November.
    5. Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    6. James Y. Dai & Peter B. Gilbert & Benoît R. Mâsse, 2012. "Partially Hidden Markov Model for Time-Varying Principal Stratification in HIV Prevention Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 52-65, March.
    7. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    8. Liu, Hefei & Song, Xinyuan, 2021. "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states," Econometrics and Statistics, Elsevier, vol. 18(C), pages 29-43.
    9. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.
    10. Edward Ip & Qiang Zhang & Jack Rejeski & Tammy Harris & Stephen Kritchevsky, 2013. "Partially Ordered Mixed Hidden Markov Model for the Disablement Process of Older Adults," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 370-384, June.
    11. Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
    12. Frank Rijmen & Edward H. Ip & Stephen Rapp & Edward G. Shaw, 2008. "Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 739-753, June.
    13. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    14. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    15. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    16. Scott L. Fulford & Scott Schuh, 2023. "Revolving versus Convenience Use of Credit Cards: Evidence from U.S. Credit Bureau Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(7), pages 1667-1701, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:100:y:2005:p:359-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.