IDEAS home Printed from https://ideas.repec.org/a/aud/audfin/v23y2025i177p180.html
   My bibliography  Save this article

Reforming Real Estate Valuation for Financial Auditors With AI: An In-Depth Exploration of Current Methods and Future Directions

Author

Listed:
  • Silviu-Ionut BABTAN

    (Accounting and Audit Department, The Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania)

Abstract

Artificial Intelligence (AI) is changing real estate valuation with innovative approaches. This article examines several AI methods – Regression Models, Decision Trees, Random Forests, Artificial Neural Networks, and XGBoost – and explores their applications for improving property valuation accuracy and efficiency, with implications for other professions involved, e.g. audit. The author starts by investigating traditional valuation methods' limitations, such as data constraints and subjectivity, and presents how these AI techniques, which are translated in property valuation field as automated valuation methods, tackle these challenges. Regression Models quantify attributes, Decision Trees provide clear insights, Random Forests improve predictions, Artificial Neural Networks design elaborate relationships, and XGBoost furnishes advanced boosting techniques for higher performance. Underscoring that AI is meant to support, not substitute, human assessors, the paper presents how these methods can enhance valuation processes, deliver more reliable valuation reports, and decrease errors, while also exploring future innovations and evolving trends in artificial intelligence for real estate industry and related professions.

Suggested Citation

  • Silviu-Ionut BABTAN, 2025. "Reforming Real Estate Valuation for Financial Auditors With AI: An In-Depth Exploration of Current Methods and Future Directions," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 23(177), pages 180-196, February.
  • Handle: RePEc:aud:audfin:v:23:y:2025:i:177:p:180
    as

    Download full text from publisher

    File URL: http://revista.cafr.ro/temp/Article_9792.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jha, Girish K. & Sinha, Kanchan, 2013. "Agricultural Price Forecasting Using Neural Network Model: An Innovative Information Delivery System," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(2).
    2. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    3. Jiahui Huang & Salmiza Saleh & Yufei Liu, 2021. "A Review on Artificial Intelligence in Education," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 10, May.
    4. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    5. Masudul Choudhury, 2015. "Subjective probability and financial valuation: contrasting paradigms," Journal of Financial Reporting and Accounting, Emerald Group Publishing Limited, vol. 13(1), pages 20-38, July.
    6. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    7. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    8. Jakub Drahokoupil, 2022. "Application of the XGBoost algorithm and Bayesian optimization for the Bitcoin price prediction during the COVID-19 period," FFA Working Papers 4.006, Prague University of Economics and Business, revised 09 May 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aykut Ekinci & Safa Sen, 2024. "Forecasting Bank Failure in the U.S.: A Cost-Sensitive Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3161-3179, December.
    2. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    3. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    4. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    5. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    6. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    7. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    8. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    9. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    10. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    11. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    12. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    13. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    14. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    15. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    16. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    17. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    18. Sylwester Bejger, 2024. "Machine Learning in Cartel Screening—The Case of Parallel Pricing in a Fuel Wholesale Market," Energies, MDPI, vol. 17(16), pages 1-17, August.
    19. Karim Zkik & Anass Sebbar & Oumaima Fadi & Sachin Kamble & Amine Belhadi, 2024. "Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach," Electronic Commerce Research, Springer, vol. 24(1), pages 497-533, March.
    20. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.

    More about this item

    Keywords

    artificial intelligence; real estate valuation; audit; automated valuation techniques methods;
    All these keywords.

    JEL classification:

    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • M40 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aud:audfin:v:23:y:2025:i:177:p:180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dumitru Valentin Florentin (email available below). General contact details of provider: http://revista.cafr.ro/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.