IDEAS home Printed from https://ideas.repec.org/a/aif/report/v7y2024i1p213-225.html
   My bibliography  Save this article

Statistical Trends in Wind Speed for Khulna, Bangladesh: An Analytical Approach

Author

Listed:
  • Md. Sazedur Rahman

    (Department of Electrical and Electronic Engineering (EEE), Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh.)

  • Jannatun Ferdous

    (Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh.Â)

  • Tanjim Taharat Aurpa

    (Department of Data Science (DS), Bangabandhu Sheikh Mujibur Rahman Digital University, Gazipur, Dhaka, Bangladesh.)

  • Md. Mahfuzul Haque

    (Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Jamalpur-2012, Bangladesh.)

  • Md. Abul Kalam Azad

    (Electrical Engineering Division, Sheikh Hasina University, Netrokona-2400, Bangladesh.)

  • Md. Ahsan Habib

    (Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur-5400, Bangladesh.)

Abstract

This study aims to examine the characteristics of the speed of wind and evaluate the prospective of wind power in Khulna, Bangladesh, from 2019 to 2023 using numerical methods. The research involves modeling wind speed data with probability density functions, specifically Weibull and the Rayleigh distributions, every month. By determining the parameters of these distributions, the study seeks to assess how wind power varies over time and its potential for energy generation. The insights gained from comparing these distributions are intended to support decision-making in renewable energy planning, infrastructure investment, and resource allocation. The study's relevance lies in its potential to provide valuable information for effectively harnessing wind energy and making informed decisions about renewable energy utilization.

Suggested Citation

  • Md. Sazedur Rahman & Jannatun Ferdous & Tanjim Taharat Aurpa & Md. Mahfuzul Haque & Md. Abul Kalam Azad & Md. Ahsan Habib, 2022. "Statistical Trends in Wind Speed for Khulna, Bangladesh: An Analytical Approach," Journal of Scientific Reports, IJSAB International, vol. 7(1), pages 213-225.
  • Handle: RePEc:aif:report:v:7:y:2024:i:1:p:213-225
    as

    Download full text from publisher

    File URL: https://ijsab.com/wp-content/uploads/1052.pdf
    Download Restriction: no

    File URL: https://www.ijsab.com/jsr-volume-7-issue-1-2/7448
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Celik, Ali Naci, 2004. "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey," Renewable Energy, Elsevier, vol. 29(4), pages 593-604.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo Fernández, 2010. "Bayesian estimation and prediction based on Rayleigh sample quantiles," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1239-1248, October.
    2. Kim, Hyeonwu & Kim, Bumsuk, 2016. "Wind resource assessment and comparative economic analysis using AMOS data on a 30 MW wind farm at Yulchon district in Korea," Renewable Energy, Elsevier, vol. 85(C), pages 96-103.
    3. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    4. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    5. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    6. Jianxing Yu & Yiqin Fu & Yang Yu & Shibo Wu & Yuanda Wu & Minjie You & Shuai Guo & Mu Li, 2019. "Assessment of Offshore Wind Characteristics and Wind Energy Potential in Bohai Bay, China," Energies, MDPI, vol. 12(15), pages 1-19, July.
    7. Khandaker Dahirul Islam & Thanansak Theppaya & Fida Ali & Jompob Waewsak & Tanita Suepa & Juntakan Taweekun & Teerawet Titseesang & Kuaanan Techato, 2021. "Wind Energy Analysis in the Coastal Region of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-18, September.
    8. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    9. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
    10. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    11. Liu, Zhenqing & Diao, Zheng & Ishihara, Takeshi, 2019. "Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations," Renewable Energy, Elsevier, vol. 136(C), pages 968-992.
    12. Drisya, G.V. & Asokan, K. & Kumar, K. Satheesh, 2018. "Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations," Renewable Energy, Elsevier, vol. 119(C), pages 540-550.
    13. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome & Ariel Liebman, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2010," Energy Economics and Management Group Working Papers 10, School of Economics, University of Queensland, Australia.
    14. Makhloufi, Saida & Mekhaldi, Abdelouahab & Teguar, Madjid, 2016. "Three powerful nature-inspired algorithms to optimize power flow in Algeria's Adrar power system," Energy, Elsevier, vol. 116(P1), pages 1117-1130.
    15. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    16. Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
    17. Soler-Bientz, Rolando, 2011. "Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula," Energy, Elsevier, vol. 36(1), pages 538-548.
    18. Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando Luiz, 2023. "An overview of non-Gaussian state-space models for wind speed data," Energy, Elsevier, vol. 266(C).
    19. Chang, Tsang-Jung & Tu, Yi-Long, 2007. "Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan," Renewable Energy, Elsevier, vol. 32(12), pages 1999-2010.
    20. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aif:report:v:7:y:2024:i:1:p:213-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Farjana Rahman (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.