IDEAS home Printed from https://ideas.repec.org/a/ags/rdeeag/55187.html
   My bibliography  Save this article

Portfolio selection models: comparative analysis and applications to the Brazilian stock market

Author

Listed:
  • Farias, Christiano Alves
  • Vieira, Wilson da Cruz
  • Santos, Maurinho Luiz dos

Abstract

This paper presents a comparison of three portfolio selection models, Mean-Variance (MV), Mean Absolute Deviation (MAD), and Minimax, as applied to the Brazilian Stock Market (BOVESPA). For this comparison, we used BOVESPA data from three different 12 month time periods: 1999 to 2000, 2001, and 2002 to 2003. Each model generated three optimal portfolios for each period, with performance determined by monthly returns over the period. In general, the accumulated returns from the Minimax modeled portfolios were superior to the BOVESPA’s principal index, the IBOVESPA. The MV model was the least efficient for portfolio selection.

Suggested Citation

  • Farias, Christiano Alves & Vieira, Wilson da Cruz & Santos, Maurinho Luiz dos, 2006. "Portfolio selection models: comparative analysis and applications to the Brazilian stock market," Revista de Economia e Agronegócio / Brazilian Review of Economics and Agribusiness, Federal University of Vicosa, Department of Agricultural Economics, vol. 4(3), pages 1-20.
  • Handle: RePEc:ags:rdeeag:55187
    DOI: 10.22004/ag.econ.55187
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/55187/files/06_artigo.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.55187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    2. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salih Çam, 2023. "Asset Allocation with Combined Models Based on Game-Theory Approach and Markov Chain Models," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 26-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    2. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    3. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    4. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    5. Shing, Chue & Nagasawa, Hiroyuki, 1999. "Interactive decision system in stochastic multiobjective portfolio selection," International Journal of Production Economics, Elsevier, vol. 60(1), pages 187-193, April.
    6. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    7. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    8. Post, G.T., 2001. "Testing for Stochastic Dominance with Diversification Possibilities," ERIM Report Series Research in Management ERS-2001-38-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    10. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    11. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    12. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    13. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    15. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    16. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    17. Johnson, Michael & O'Connor, Ian & Malcolm, Bill, 2006. "Agribusiness Assets in Investment Portfolios," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139794, Australian Agricultural and Resource Economics Society.
    18. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    19. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    20. Perez-Mesa, Juan Carlos & Galdeano-Gomez, Emilio & Aznar-Sanchez, Jose A., 2011. "Management System for Harvest Scheduling: The Case of Horticultural Production in Southeast Spain," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 14(4), pages 1-20, November.

    More about this item

    Keywords

    Financial Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:rdeeag:55187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/drufvbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.