IDEAS home Printed from https://ideas.repec.org/a/ags/nejare/28815.html
   My bibliography  Save this article

Forecasting Item Movement With Scan Data: Box-Jenkins Results

Author

Listed:
  • Eastwood, David B.
  • Gray, Morgan D.
  • Brooker, John R.

Abstract

Preliminary forecasts using the Box-Jenkins methodology for supermarket scan data for ground beef and roast item movement are described. The functional form and the accuracy of the forecasts vary by product. Results suggest that further analyses incorporating price and advertising may increase the accuracy of the forecasts.

Suggested Citation

  • Eastwood, David B. & Gray, Morgan D. & Brooker, John R., 1991. "Forecasting Item Movement With Scan Data: Box-Jenkins Results," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 20(1), pages 1-10, April.
  • Handle: RePEc:ags:nejare:28815
    DOI: 10.22004/ag.econ.28815
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/28815/files/20010042.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.28815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McLaughlin, Edward W. & Lesser, William H., 1986. "Experimental Price Variability and Consumer Response: Tracking Potato Sales with Scanners," Staff Papers 186131, Cornell University, Department of Applied Economics and Management.
    2. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    3. Oral Capps & Rodolfo M. Nayga, 1991. "Demand for fresh beef products in supermarkets: A trial with scanner data," Agribusiness, John Wiley & Sons, Ltd., vol. 7(3), pages 241-251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AOUINI, Syrine & Gil, Jose M., 2017. "Innovation and Brand Effects on the Consumers’ Demand for Fresh Milk in Spain," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258131, Agricultural and Applied Economics Association.
    2. Eugene Jones & Barry W. Mustiful & Wen S. Chern, 1994. "Estimating demand elasticities for cereal products: A socioeconomic approach using scanner data," Agribusiness, John Wiley & Sons, Ltd., vol. 10(4), pages 325-339.
    3. Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    5. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    6. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    7. Sanders, Dwight R. & Manfredo, Mark R., 2006. "Forecasting Basis Levels in the Soybean Complex: A Comparison of Time Series Methods," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 513-523, December.
    8. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    9. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    10. David Murrell & Weiqiu Yu, 2000. "The Effect of the Harmonized Sales Tax on Consumer Prices in Atlantic Canada," Canadian Public Policy, University of Toronto Press, vol. 26(4), pages 451-460, December.
    11. Thomas Dohmen & Hartmut F. Lehmann & Mark E. Schaffer, 2014. "Wage Policies of a Russian Firm and the Financial Crisis of 1998: Evidence from Personnel Data, 1997 to 2002," ILR Review, Cornell University, ILR School, vol. 67(2), pages 504-531, April.
    12. Jun Ma & Mark E. Wohar, 2013. "An Unobserved Components Model that Yields Business and Medium-Run Cycles," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(7), pages 1351-1373, October.
    13. Pami Dua & Anirvan Banerji, 2011. "Predicting Recessions and Slowdowns: A Robust Approach," Working Papers id:4391, eSocialSciences.
    14. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    15. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    16. Torstein Bye & Alexandra Katz, 1995. "Returns to Publicly Owned Transport Infrastructure Investment . A Cost Function/Cost Share Approach for Norway, 1971-1991," Discussion Papers 154, Statistics Norway, Research Department.
    17. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    18. Korbinian Dress & Stefan Lessmann & Hans-Jorg von Mettenheim, 2017. "Residual Value Forecasting Using Asymmetric Cost Functions," Papers 1707.02736, arXiv.org.
    19. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    20. Guillén, Osmani Teixeira de Carvalho & Issler, João Victor & Franco-Neto, Afonso Arinos de Mello, 2014. "On the welfare costs of business-cycle fluctuations and economic-growth variation in the 20th century and beyond," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 62-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nejare:28815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/nareaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.