IDEAS home Printed from https://ideas.repec.org/a/ags/ijarit/349429.html
   My bibliography  Save this article

Establishment of an effective photobioreactor for growing microalgae: A review

Author

Listed:
  • Md. Mirazul Islam
  • Hasibul Alam
  • Aishi Acharjee
  • Md. Salatul Islam Mozumder

Abstract

The premise that microalgae could be used to produce landscapes of biofuel, nutrition, and bioremediation is gaining popularity. The four main factors influential to microalgae growth are light, CO2, nutrients, and process conditions-including temperature and pH. Compared to other open systems such as ponds, control and efficiency in flat plate and tubular type photobioreactors are much higher. A photobioreactor needs to be developed to enhance the mass transport, and light penetration, and to reduce contamination. Every kind of photobioreactor has its advantages and limitations in using the airlift, bubble column, and stirred tank. Thus, the use of hybrid bioreactors makes it possible to eliminate individual limitations. This review discusses and analyzes the features of photobioreactor systems, their drawbacks, and the progress achieved in the field of microalgae production.

Suggested Citation

  • Md. Mirazul Islam & Hasibul Alam & Aishi Acharjee & Md. Salatul Islam Mozumder, 2024. "Establishment of an effective photobioreactor for growing microalgae: A review," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 14(2), December.
  • Handle: RePEc:ags:ijarit:349429
    DOI: 10.22004/ag.econ.349429
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/349429/files/16%29%20IJARIT%200481.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.349429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pires, José C.M. & Alvim-Ferraz, Maria C.M. & Martins, Fernando G., 2017. "Photobioreactor design for microalgae production through computational fluid dynamics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 248-254.
    2. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ansub Khan, Mohammad & Abbas, Abiha & Dickson, Rofice, 2023. "A strategy for commercialization of macroalga biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    7. Sawant, S.S. & Khadamkar, H.P. & Mathpati, C.S. & Pandit, Reena & Lali, A.M., 2018. "Computational and experimental studies of high depth algal raceway pond photo-bioreactor," Renewable Energy, Elsevier, vol. 118(C), pages 152-159.
    8. Chodkowska-Miszczuk, J. & Martinát, S. & van der Horst, D., 2021. "Changes in feedstocks of rural anaerobic digestion plants: External drivers towards a circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Castro, J.S. & Ferreira, J. & Magalhães, I.B. & Jesus Junior, M.M. & Marangon, B.B. & Pereira, A.S.A.P. & Lorentz, J.F. & Gama, R.C.N. & Rodrigues, F.A. & Calijuri, M.L., 2023. "Life cycle assessment and techno-economic analysis for biofuel and biofertilizer recovery as by-products from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Fatnassi, Hicham & Errais, Reda & Poncet, Christine, 2025. "Optimizing greenhouse design for enhanced microalgae production: A CFD Analysis of microclimate and water thermal dynamics in raceway ponds," Ecological Modelling, Elsevier, vol. 499(C).
    11. Tatyana Iglina & Pavel Iglin & Dmitry Pashchenko, 2022. "Industrial CO 2 Capture by Algae: A Review and Recent Advances," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    12. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    14. Fu, Jingwei & Huang, Yun & Xia, Ao & Zhu, Xianqing & Zhu, Xun & Chang, Jo-Shu & Liao, Qiang, 2022. "How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: From gas dissolution to cells growth," Renewable Energy, Elsevier, vol. 198(C), pages 114-122.
    15. Sawant, S.S. & Gosavi, S.N. & Khadamkar, H.P. & Mathpati, C.S. & Pandit, Reena & Lali, A.M., 2019. "Energy efficient design of high depth raceway pond using computational fluid dynamics," Renewable Energy, Elsevier, vol. 133(C), pages 528-537.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijarit:349429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://ijarit.webs.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.