IDEAS home Printed from https://ideas.repec.org/a/ags/arerjl/141698.html
   My bibliography  Save this article

Redistributing Agricultural Data by a Dasymetric Mapping Methodology

Author

Listed:
  • Martins, Maria de Belem Costa Freitas
  • Xavier, Antonio Manuel de Sousa
  • Fragoso, Rui Manuel de Sousa

Abstract

This paper examines the adaptation of dasymetric mapping methodologies to agricultural data, including their testing and transposition, in order to recover the underlying statistical surface (i.e., an approximation of the real distribution of data). A methodology based on the ideas of Gallego and Peedell (2001) and on the binary method is proposed. It has several steps: (i) the exclusion of target zones for which no observations exist (binary method), (ii) the application of an iterative process to define the most precise densities for data distribution, and (iii) the stratification/definition of sub-units with homogenous characteristics if the results of the previous step are not satisfactory, and the subsequent application of step two. // The methodology was applied in the Alentejo region of Portugal, using data from the 1999 Agricultural Census. Several counties are used as source zones. The aim was to generate a distribution of agro-forestry occupations as close as possible to reality. Two lines of analysis were followed: (i) application of the methodology simultaneously to all counties (definition of regional densities), and (ii) application of the methodology separately to the different sub-areas with similar characteristics (definition of sub-regional densities). For an easy application of the methodology, a computer tool was created, which allowed the easy optimization, validation, and exportation of the data into a Geographic Information System (GIS). // The results were validated using several error indicators at the county level, as well as in a sample of parishes. We show that the second variant of the methodology yielded more precise results, and is superior for the types of data available. This method yielded maps in which the distribution of the most relevant agro-forestry occupations is closest to reality.

Suggested Citation

  • Martins, Maria de Belem Costa Freitas & Xavier, Antonio Manuel de Sousa & Fragoso, Rui Manuel de Sousa, 2012. "Redistributing Agricultural Data by a Dasymetric Mapping Methodology," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), December.
  • Handle: RePEc:ags:arerjl:141698
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/141698
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jeremy Mennis, 2002. "Using Geographic Information Systems to Create and Analyze Statistical Surfaces of Population and Risk for Environmental Justice Analysis," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 281-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. António Xavier & Maria Belem Freitas & Maria do Socorro Rosário & Rui Fragoso, 2016. "Disaggregating Statistical Data at Field Level: An Entropy Approach," CEFAGE-UE Working Papers 2016_06, University of Evora, CEFAGE-UE (Portugal).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:arerjl:141698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/nareaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.