IDEAS home Printed from https://ideas.repec.org/a/adi/ijbess/v3y2021i1p21-31.html
   My bibliography  Save this article

A simulation approach for aircraft cargo loading considering weight and balance constraints

Author

Listed:
  • Erdem Agbas

    (Department of Air Transport Management, Ibn Haldun University, 34494, Istanbul)

  • Ali Osman Kusakci

    (Department of Management, Ibn Haldun University, 34494, Istanbul, Turkey)

Abstract

Air cargo transport is a growing industry in parallel with the growth in world trade and e-commerce. The global air cargo transport traffic getting busier, the importance of timely loading with minimum error is increasing. Therefore, digitalization of the air cargo loading process is needed. Assignment of Unit Load Devices (ULDs) to the specific positions on the freighter is performed by loadmasters by manual or semi-manual methods. This study aims to design a simulation model, which performs the ULD assignment automatically by simulating the loading process performed by the experienced loadmasters under the weight and balance constraints. The SEMMA (sample, explore, modify, model, assess) model is used while generating the simulation model. Fifty real-world loading orders were used to assess the performance of the model. The ULD assignment process by the simulation model and the loadmasters using semi-manual loading were compared with regard to time and center of gravity performance indicators. The results demonstrated that the simulation model can load all the given sets of ULDs, as efficiently as a loadmaster with a similar center of gravity in a shorter period of time. In conclusion, the proposed simulation model provides an efficient solution to the ULD assignment problem. However, the base model generated may be improved to address various real-world scenarios

Suggested Citation

  • Erdem Agbas & Ali Osman Kusakci, 2021. "A simulation approach for aircraft cargo loading considering weight and balance constraints," International Journal of Business Ecosystem & Strategy (2687-2293), Bussecon International Academy, vol. 3(1), pages 21-31, January.
  • Handle: RePEc:adi:ijbess:v:3:y:2021:i:1:p:21-31
    DOI: 10.36096/ijbes.v3i1.245
    as

    Download full text from publisher

    File URL: https://www.bussecon.com/ojs/index.php/ijbes/article/view/245/98
    Download Restriction: no

    File URL: https://doi.org/10.36096/ijbes.v3i1.245
    Download Restriction: no

    File URL: https://libkey.io/10.36096/ijbes.v3i1.245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lurkin, Virginie & Schyns, Michaël, 2015. "The Airline Container Loading Problem with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 244(3), pages 955-965.
    2. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    3. S Limbourg & M Schyns & G Laporte, 2012. "Automatic aircraft cargo load planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1271-1283, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    2. Xiangling Zhao & Yun Dong & Lei Zuo, 2023. "A Combinatorial Optimization Approach for Air Cargo Palletization and Aircraft Loading," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    3. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    4. Lurkin, Virginie & Schyns, Michaël, 2015. "The Airline Container Loading Problem with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 244(3), pages 955-965.
    5. Gajda, Mikele & Trivella, Alessio & Mansini, Renata & Pisinger, David, 2022. "An optimization approach for a complex real-life container loading problem," Omega, Elsevier, vol. 107(C).
    6. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    7. Xiao, Fan & Guo, Siqi & Huang, Lin & Huang, Lei & Liang, Zhe, 2022. "Integrated aircraft tail assignment and cargo routing problem with through cargo consideration," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 328-351.
    8. Paquay, Célia & Limbourg, Sabine & Schyns, Michaël, 2018. "A tailored two-phase constructive heuristic for the three-dimensional Multiple Bin Size Bin Packing Problem with transportation constraints," European Journal of Operational Research, Elsevier, vol. 267(1), pages 52-64.
    9. Bombelli, Alessandro & Fazi, Stefano, 2022. "The ground handler dock capacitated pickup and delivery problem with time windows: A collaborative framework for air cargo operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    10. Artur Kierzkowski & Tomasz Kisiel & Piotr Uchroński & Andrija Vidović, 2023. "Simulation Model for Sustainable Management of the Air Cargo Screening Process," Energies, MDPI, vol. 16(21), pages 1-12, October.
    11. Simon Emde & Hamid Abedinnia & Anne Lange & Christoph H. Glock, 2020. "Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 397-426, June.
    12. Konstantinos N. Androutsopoulos & Eleni Karouti, 2022. "A safety-driven truck loading problem," Operational Research, Springer, vol. 22(5), pages 4931-4963, November.
    13. Yang Xia & Tingying Wu & Beixin Xia & Junkang Zhang, 2023. "Truck-Drone Pickup and Delivery Problem with Drone Weight-Related Cost," Sustainability, MDPI, vol. 15(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adi:ijbess:v:3:y:2021:i:1:p:21-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Umit Hacioglu (email available below). General contact details of provider: https://edirc.repec.org/data/ibihutr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.