IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v6y2024i3p1488-1504.html
   My bibliography  Save this article

AI-Powered Detection: Implementing Deep Learning for Breast Cancer Prediction

Author

Listed:
  • Anmol Tanveer

    (Faculty of Computer Science and Information Technology, Virtual University of Pakistan, Lahore)

Abstract

Breast cancer remains a critical global health issue, affecting millions of women worldwide. According to the World Health Organization (WHO), there were 2.3 million new cases and 685,000 deaths from breast cancer in 2020 alone. This makes breast cancer the most prevalent cancer globally, with 7.8 million cases diagnosed over the past five years. As the prevalence of breast cancer continues to rise, the need for accurate and efficient diagnostic tools becomes increasingly urgent. Artificial Intelligence (AI) has shown considerable promise in enhancing breast cancer detection and diagnosis. Over the past two decades, AI tools have increasingly aided physicians in interpreting mammograms, offering the potential for automated, precise, and early cancer detection. However, significant challenges remain, particularly concerning data imbalance in datasets—where cancerous images are often underrepresented—and the issue of low pixel resolution, which can obscure crucial details in medical images. This work utilizes a subset of the data called Mini-DDSM, a lightweight version of the Digital Database for Screening Mammography. Toaddress these challenges, our research employed the NeighborhoodCleaning Rule (NCR) algorithm from the imbalancelibrary, designed to mitigate data imbalance by refining the dataset through the selective removal of noisy and borderline examples. This method enhances the quality of training data, enabling AI models to learn more effectively. We developed a deep learning model that incorporates a transfer learning layer (DenseNet121), dense layers, a global pooling layer, and a dropout layer to optimize performance. This model demonstrated promising results, effectively addressing the challenges of data imbalance and low image resolution. Our approach underscores the potential of AI to significantly improve breast cancer detection and diagnosis, ultimately leading to better patient outcomes. Continued research and refinement of AI techniques will be crucial in overcoming remaining challenges and fully realizing the potential of these technologies in healthcare.

Suggested Citation

  • Anmol Tanveer, 2024. "AI-Powered Detection: Implementing Deep Learning for Breast Cancer Prediction," International Journal of Innovations in Science & Technology, 50sea, vol. 6(3), pages 1488-1504, September.
  • Handle: RePEc:abq:ijist1:v:6:y:2024:i:3:p:1488-1504
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/1009/1601
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/1009
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Rosenkranz & Viktoria Stray & Manuel Wiesche, 2025. "Navigating the New Frontier of Information Systems Engineering," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 67(1), pages 1-5, February.
    2. Peter Hofmann & Nils Urbach & Julia Lanzl & Kevin C. Desouza, 2024. "AI-enabled information systems: Teaming up with intelligent agents in networked business," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-8, December.
    3. Christian Engel & Philipp Ebel & Jan Marco Leimeister, 2022. "Cognitive automation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 339-350, March.
    4. Chenyuan Liu & Heng Li & Kexin Li & Yue Wu & Baogang Lv, 2025. "Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
    5. Liyun Su & Dan Li & Dongyang Qiu, 2025. "BLS-QLSTM: a novel hybrid quantum neural network for stock index forecasting," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    6. Dilek Fraisl & Linda See & Steffen Fritz & Mordechai Haklay & Ian McCallum, 2025. "Leveraging the collaborative power of AI and citizen science for sustainable development," Nature Sustainability, Nature, vol. 8(2), pages 125-132, February.
    7. Sheeraz Arif Arif & Rashid Hussain & Nadia Mustaqim Ansari & Waseem Rauf, 2023. "A novel hybrid feature method for weeds identification in the agriculture sector," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(3), pages 132-142.
    8. Yuzhu Liang & Xiaotong Bi & Ruihan Shen & Zhengyang He & Yuqi Wang & Juntao Xu & Yao Zhang & Xinggang Fan, 2025. "When Mathematical Methods Meet Artificial Intelligence and Mobile Edge Computing," Mathematics, MDPI, vol. 13(11), pages 1-38, May.
    9. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    10. Praneel Chand & Mansour Assaf, 2024. "An Empirical Study on Lightweight CNN Models for Efficient Classification of Used Electronic Parts," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    11. Julius Peter Landwehr & Niklas Kühl & Jannis Walk & Mario Gnädig, 2022. "Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 707-728, December.
    12. Ruiz-Moreno, Sara & Gallego, Antonio J. & Sanchez, Adolfo J. & Camacho, Eduardo F., 2023. "A cascade neural network methodology for fault detection and diagnosis in solar thermal plants," Renewable Energy, Elsevier, vol. 211(C), pages 76-86.
    13. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    14. Yuanyuan Yang & Md Muhie Menul Haque & Dongling Bai & Wei Tang, 2021. "Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review," Energies, MDPI, vol. 14(21), pages 1-26, October.
    15. Abdulwahhab, Ali H. & Abdulaal, Alaa Hussein & Thary Al-Ghrairi, Assad H. & Mohammed, Ali Abdulwahhab & Valizadeh, Morteza, 2024. "Detection of epileptic seizure using EEG signals analysis based on deep learning techniques," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    17. Muhammad Waqas Farooq & Faiza Nawaz, 2024. "To Gain Sustainable Competitive Advantages (SCA) Using Artificial Intelligence (AI) Over Competitors," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(2), pages 1026-1033.
    18. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Yuanhe Du & Tianhang Liu & Wei Shang & Jia Li, 2025. "Research on the Impact of Artificial Intelligence on Urban Green Energy Efficiency: An Empirical Test Based on Neural Network Models," Sustainability, MDPI, vol. 17(16), pages 1-47, August.
    20. Rashid Amin & Muzammal Majeed & Farrukh Shoukat Ali & Adeel Ahmed & Mudassar Hussain, 2022. "Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm," International Journal of Innovations in Science & Technology, 50sea, vol. 4(5), pages 158-172, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:6:y:2024:i:3:p:1488-1504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.