IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v40y2012i6p767-773.html
   My bibliography  Save this item

Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
  2. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
  3. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
  4. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
  5. Chia-Nan Wang & Minh Nhat Nguyen & Anh Luyen Le & Hector Tibo, 2020. "A DEA Resampling Past-Present-Future Comparative Analysis of the Food and Beverage Industry: The Case Study on Thailand vs. Vietnam," Mathematics, MDPI, vol. 8(7), pages 1-24, July.
  6. Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.
  7. Min-Chun Yu & Chia-Nan Wang & Nguyen-Nhu-Y Ho, 2016. "A Grey Forecasting Approach for the Sustainability Performance of Logistics Companies," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
  8. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  9. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
  10. Adedayo Ajayi & Patrick Chi-Kwong Luk & Liyun Lao & Mohammad Farhan Khan, 2023. "Energy Forecasting Model for Ground Movement Operation in Green Airport," Energies, MDPI, vol. 16(13), pages 1-19, June.
  11. Zhaohua Wang & Chen Wang & Jianhua Yin, 2015. "Strategies for addressing climate change on the industrial level: affecting factors to CO 2 emissions of energy-intensive industries in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 303-317, February.
  12. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  13. Che-Jung Chang & Guiping Li & Shao-Qing Zhang & Kun-Peng Yu, 2019. "Employing a Fuzzy-Based Grey Modeling Procedure to Forecast China’s Sulfur Dioxide Emissions," IJERPH, MDPI, vol. 16(14), pages 1-10, July.
  14. Qasem Abu Al-Haija, 2021. "A Stochastic Estimation Framework for Yearly Evolution of Worldwide Electricity Consumption," Forecasting, MDPI, vol. 3(2), pages 1-11, April.
  15. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
  16. Zheng-Xin Wang, 2013. "A genetic algorithm-based grey method for forecasting food demand after snow disasters: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 675-686, September.
  17. Ma, Weimin & Zhu, Xiaoxi & Wang, Miaomiao, 2013. "Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm," Resources Policy, Elsevier, vol. 38(4), pages 613-620.
  18. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
  19. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
  20. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
  21. Oliviero A. Carboni & Paolo Russu, 2018. "Measuring and forecasting regional environmental and economic efficiency in Italy," Applied Economics, Taylor & Francis Journals, vol. 50(4), pages 335-353, January.
  22. Tuncay Özcan, 2017. "Application of Seasonal and Multivariable Grey Prediction Models for Short-Term Load Forecasting," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 5(2), pages 329-338, December.
  23. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
  24. Wei Zhou & Demei Zhang, 2016. "An Improved Metabolism Grey Model for Predicting Small Samples with a Singular Datum and Its Application to Sulfur Dioxide Emissions in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-11, February.
  25. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
  26. Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
  27. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
  28. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
  29. Xu, Ning & Ding, Song & Gong, Yande & Bai, Ju, 2019. "Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model," Energy, Elsevier, vol. 175(C), pages 218-227.
  30. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
  31. Torrini, Fabiano Castro & Souza, Reinaldo Castro & Cyrino Oliveira, Fernando Luiz & Moreira Pessanha, Jose Francisco, 2016. "Long term electricity consumption forecast in Brazil: A fuzzy logic approach," Socio-Economic Planning Sciences, Elsevier, vol. 54(C), pages 18-27.
  32. Yi-Chung Hu, 2017. "Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
  33. Lianhui Li & Chunyang Mu & Shaohu Ding & Zheng Wang & Runyang Mo & Yongfeng Song, 2015. "A Robust Weighted Combination Forecasting Method Based on Forecast Model Filtering and Adaptive Variable Weight Determination," Energies, MDPI, vol. 9(1), pages 1-22, December.
  34. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
  35. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
  36. Guo, Hua & Deng, Shengxiang & Yang, Jinbiao & Liu, Jiangwei & Nie, Changda, 2020. "Analysis and prediction of industrial energy conservation in underdeveloped regions of China using a data pre-processing grey model," Energy Policy, Elsevier, vol. 139(C).
  37. Wu, Lifeng & Liu, Sifeng & Fang, Zhigeng & Xu, Haiyan, 2015. "Properties of the GM(1,1) with fractional order accumulation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 287-293.
  38. Shaghayegh KORDNOORI & Hamidreza MOSTAFAEI & Shirin KORDNOORI, 2015. "Applied SCGM(1,1)c Model and Weighted Markov Chain for Exchange Rate Ratios," Hyperion Economic Journal, Faculty of Economic Sciences, Hyperion University of Bucharest, Romania, vol. 3(4), pages 12-22, December.
  39. Yi-Chung Hu, 2017. "Nonadditive Grey Prediction Using Functional-Link Net for Energy Demand Forecasting," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
  40. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
  41. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
  42. Maghrabie, Hesham F. & Beauregard, Yvan & Schiffauerova, Andrea, 2019. "Grey-based Multi-Criteria Decision Analysis approach: Addressing uncertainty at complex decision problems," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 366-379.
  43. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.