IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i5p3244-3254.html
   My bibliography  Save this item

Prospective on the energy efficiency and CO2 emissions in the EU cement industry

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Söğüt, Z. & Oktay, Z. & Karakoc, H. & Hepbasli, A., 2012. "Investigation of environmental and exergetic performance for coal-preparation units in cement production processes," Energy, Elsevier, vol. 46(1), pages 72-77.
  2. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  3. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
  4. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2017. "Comparative LCA on using waste materials in the cement industry: A Hong Kong case study," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 199-208.
  5. Yang Xi & Teng Fei & Wang Gehua, 2013. "Quantifying co-benefit potentials in the Chinese cement sector during 12th Five Year Plan: an analysis based on marginal abatement cost with monetized environmental effect," Post-Print hal-03501949, HAL.
  6. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
  7. Huh, Sung-Yoon & Lee, Hyejin & Shin, Jungwoo & Lee, Donghyun & Jang, Jinyoung, 2018. "Inter-fuel substitution path analysis of the korea cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4091-4099.
  8. Mikulčić, Hrvoje & Vujanović, Milan & Fidaros, Dimitris K. & Priesching, Peter & Minić, Ivica & Tatschl, Reinhard & Duić, Neven & Stefanović, Gordana, 2012. "The application of CFD modelling to support the reduction of CO2 emissions in cement industry," Energy, Elsevier, vol. 45(1), pages 464-473.
  9. Giacomo Bruni & Alessandra De Santis & Carlos Herce & Luigi Leto & Chiara Martini & Fabrizio Martini & Marcello Salvio & Federico Alberto Tocchetti & Claudia Toro, 2021. "From Energy Audit to Energy Performance Indicators (EnPI): A Methodology to Characterize Productive Sectors. The Italian Cement Industry Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
  10. Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
  11. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
  12. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
  13. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
  14. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
  15. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
  16. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.
  17. Tesema, Gudise & Worrell, Ernst, 2015. "Energy efficiency improvement potentials for the cement industry in Ethiopia," Energy, Elsevier, vol. 93(P2), pages 2042-2052.
  18. Streimikiene, Dalia & Volochovic, Andzej & Simanaviciene, Zaneta, 2012. "Comparative assessment of policies targeting energy use efficiency in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3613-3620.
  19. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
  20. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
  21. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
  22. Moya, José Antonio, 2013. "Impact of support schemes and barriers in Europe on the evolution of cogeneration," Energy Policy, Elsevier, vol. 60(C), pages 345-355.
  23. Kong-Qing Li & Ran Lu & Rui-Wen Chu & Dou-Dou Ma & Li-Qun Zhu, 2018. "Trends and Driving Forces of Carbon Emissions from Energy Consumption: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
  24. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
  25. Sucic, Boris & Al-Mansour, Fouad & Pusnik, Matevz & Vuk, Tomaz, 2016. "Context sensitive production planning and energy management approach in energy intensive industries," Energy, Elsevier, vol. 108(C), pages 63-73.
  26. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
  27. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
  28. Alshammari, Yousef M., 2021. "Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia," Energy Policy, Elsevier, vol. 150(C).
  29. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
  30. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
  31. Rootzén, Johan & Johnsson, Filip, 2013. "Exploring the limits for CO2 emission abatement in the EU power and industry sectors—Awaiting a breakthrough," Energy Policy, Elsevier, vol. 59(C), pages 443-458.
  32. Karolina Wojtacha-Rychter & Piotr Kucharski & Adam Smolinski, 2021. "Conventional and Alternative Sources of Thermal Energy in the Production of Cement—An Impact on CO 2 Emission," Energies, MDPI, vol. 14(6), pages 1-15, March.
  33. Cancio Díaz, Yudiesky & Sánchez Berriel, Sofia & Heierli, Urs & Favier, Aurélie R. & Sánchez Machado, Inocencio R. & Scrivener, Karen L. & Martirena Hernández, José Fernando & Habert, Guillaume, 2017. "Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies," Development Engineering, Elsevier, vol. 2(C), pages 82-91.
  34. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  35. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
  36. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.
  37. Blanco, Christian C. & Caro, Felipe & Corbett, Charles J., 2020. "Do carbon abatement opportunities become less profitable over time? A global firm-level perspective using CDP data," Energy Policy, Elsevier, vol. 138(C).
  38. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.