IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v40y2013icp269-276.html
   My bibliography  Save this item

Where the wind blows: Assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Anselm Eicke, Tarun Khanna, and Lion Hirth, 2020. "Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6), pages 281-304.
  2. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
  3. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
  4. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
  5. Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
  6. Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  7. Xia, Fang & Song, Feng, 2017. "The uneven development of wind power in China: Determinants and the role of supporting policies," Energy Economics, Elsevier, vol. 67(C), pages 278-286.
  8. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
  9. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
  10. Aquila, Giancarlo & Rotela Junior, Paulo & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo, 2017. "Wind power feasibility analysis under uncertainty in the Brazilian electricity market," Energy Economics, Elsevier, vol. 65(C), pages 127-136.
  11. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
  12. Xia, Fang & Song, Feng, 2017. "Evaluating the economic impact of wind power development on local economies in China," Energy Policy, Elsevier, vol. 110(C), pages 263-270.
  13. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
  14. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
  15. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
  16. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
  17. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
  18. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
  19. Du, Yimeng & Takeuchi, Kenji, 2020. "Does a small difference make a difference? Impact of feed-in tariff on renewable power generation in China," Energy Economics, Elsevier, vol. 87(C).
  20. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
  21. Wagner, Johannes, 2016. "Grid Investment and Support Schemes for Renewable Electricity Generation," EWI Working Papers 2016-8, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2017.
  22. Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Kiavarz, Majid & Alavipanah, Seyed Kazem, 2020. "On the effect of geographical, topographic and climatic conditions on feed-in tariff optimization for solar photovoltaic electricity generation: A case study in Iran," Renewable Energy, Elsevier, vol. 153(C), pages 430-439.
  23. May, Nils, 2017. "The impact of wind power support schemes on technology choices," Energy Economics, Elsevier, vol. 65(C), pages 343-354.
  24. Pechan, A., 2017. "Where do all the windmills go? Influence of the institutional setting on the spatial distribution of renewable energy installation," Energy Economics, Elsevier, vol. 65(C), pages 75-86.
  25. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  26. Johannes Schmidt & Rafael Cancella & Amaro Olímpio Pereira Junior, 2014. "Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil," Working Papers 562014, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  27. repec:zbw:inwedp:562014 is not listed on IDEAS
  28. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
  29. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
  30. Simshauser, P., 2021. "Renewable Energy Zones in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2119, Faculty of Economics, University of Cambridge.
  31. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
  32. Hu, Junfei & Chen, Huanyue & Zhou, Peng & Guo, Peng, 2022. "Optimal subsidy level for waste-to-energy investment considering flexibility and uncertainty," Energy Economics, Elsevier, vol. 108(C).
  33. Xia, Fang & Lu, Xi & Song, Feng, 2020. "The role of feed-in tariff in the curtailment of wind power in China," Energy Economics, Elsevier, vol. 86(C).
  34. Schmidt, Lukas & Zinke, Jonas, 2020. "One price fits all? Wind power expansion under uniform and nodal pricing in Germany," EWI Working Papers 2020-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  35. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
  36. Neuhoff, Karsten & May, Nils & Richstein, Jörn C., 2022. "Financing renewables in the age of falling technology costs," Resource and Energy Economics, Elsevier, vol. 70(C).
  37. Richard Schmalensee, 2016. "The Performance of U.S. Wind and Solar Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  38. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
  39. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
  40. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
  41. Hu, Xing & Yu, Shiwei & Fang, Xu & Ovaere, Marten, 2023. "Which combinations of renewable energy policies work better? Insights from policy text synergies in China," Energy Economics, Elsevier, vol. 127(PA).
  42. Paulo Henrique de Mello Santana, 2015. "Cost-effectiveness as Energy Policy Mechanisms: The Paradox of Technology-neutral and Technology-specific Policies in the Short and Long Term," Working Papers Working Paper 2015-02, Regional Research Institute, West Virginia University.
  43. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
  44. de Mello Santana, Paulo Henrique, 2016. "Cost-effectiveness as energy policy mechanisms: The paradox of technology-neutral and technology-specific policies in the short and long term," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1216-1222.
  45. Schmidt, Johannes & Cancella, Rafael & Junior, Amaro Olímpio Pereira, 2014. "Combing windpower and hydropower to decrease seasonal and inter-annual availability of renewable energy sources in Brazil," Discussion Papers DP-56-2014, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  46. Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2022. "Emissions reduction in a second-best world: On the long-term effects of overlapping regulations," Energy Economics, Elsevier, vol. 109(C).
  47. Zhang, Ruixiaoxiao & Shimada, Koji & Ni, Meng & Shen, Geoffrey Q.P. & Wong, Johnny K.W., 2020. "Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China," Energy Policy, Elsevier, vol. 146(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.