IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v34y2012i4p980-991.html
   My bibliography  Save this item

Where does energy R&D come from? Examining crowding out from energy R&D

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
  2. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
  3. John P. Weche, 2015. "Does green corporate investment really crowd out other business investment?," Working Paper Series in Economics 350, University of Lüneburg, Institute of Economics.
  4. María Teresa Costa‐Campi & Néstor Duch‐Brown & José García‐Quevedo, 2019. "Innovation strategies of energy firms," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(5), pages 1073-1085, September.
  5. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
  6. Sen, Suphi, 2015. "Corporate governance, environmental regulations, and technological change," European Economic Review, Elsevier, vol. 80(C), pages 36-61.
  7. Galina Besstremyannaya & Richard Dasher & Sergei Golovan, 2017. "Technological change, energy, environment and economic growth in Japan," Working Papers w0245, Center for Economic and Financial Research (CEFIR).
  8. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
  9. Kevin Spiritus & Etienne Lehmann & Sander Renes, "undated". "Optimal Taxation with Multiple Incomes and Types," Tinbergen Institute Discussion Papers 22-000/IVI, Tinbergen Institute.
  10. Claudia Kettner-Marx & Daniela Kletzan-Slamanig, 2016. "Österreich 2025 – Umweltinnovationen in Österreich. Performance und Erfolgsfaktoren," WIFO Monatsberichte (monthly reports), WIFO, vol. 89(11), pages 809-820, November.
  11. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
  12. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
  13. Li, Ke & Lin, Boqiang, 2016. "Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model," Energy Policy, Elsevier, vol. 89(C), pages 214-223.
  14. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
  15. Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy, 2016. "Environmental investment and firm performance: A network approach," Energy Economics, Elsevier, vol. 57(C), pages 243-255.
  16. Nicolo Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SPRU Working Paper Series 2021-08, SPRU - Science Policy Research Unit, University of Sussex Business School.
  17. Francesca Pantaleone & Roberto Fazioli, 2022. "Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities," Energies, MDPI, vol. 15(9), pages 1-15, April.
  18. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
  19. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
  20. Xie, Ronghui & Teo, Thompson S.H., 2022. "Green technology innovation, environmental externality, and the cleaner upgrading of industrial structure in China — Considering the moderating effect of environmental regulation," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  21. Amore, Mario Daniele & Bennedsen, Morten, 2016. "Corporate governance and green innovation," Journal of Environmental Economics and Management, Elsevier, vol. 75(C), pages 54-72.
  22. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
  23. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
  24. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
  25. Antung Anthony Liu & Hiroaki Yamagami, 2018. "Environmental Policy in the Presence of Induced Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 279-299, September.
  26. repec:zbw:bofrdp:urn:nbn:fi:bof-201512101465 is not listed on IDEAS
  27. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
  28. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
  29. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
  30. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
  31. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
  32. Dongdong Li & Chenxuan Shang, 2022. "When does environmental innovation crowd out process innovation? A dynamic analysis," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2275-2283, September.
  33. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
  34. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
  35. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
  36. Laura Nowzohour, 2021. "Can Adjustments Costs in Research Derail the Transition to Green Growth ?," CIES Research Paper series 67-2021, Centre for International Environmental Studies, The Graduate Institute.
  37. Peng, Xinyuan & Tang, Pengcheng & Yang, Shuwang & Fu, Shuke, 2020. "How should mining firms invest in the multidimensions of corporate social responsibility? Evidence from China," Resources Policy, Elsevier, vol. 65(C).
  38. Dong, Zhaoyingzi & Wang, Shaojian & Zhang, Weiwen & Shen, Huijun, 2022. "The dynamic effect of environmental regulation on firms’ energy consumption behavior-Evidence from China's industrial firms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  39. Antoine Dechezleprêtre & David Popp, 2015. "Fiscal and Regulatory Instruments for Clean Technology Development in the European Union," CESifo Working Paper Series 5361, CESifo.
  40. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
  41. Hanna Hottenrott & Sascha Rexh�user, 2015. "Policy-Induced Environmental Technology and Inventive Efforts: Is There a Crowding Out?," Industry and Innovation, Taylor & Francis Journals, vol. 22(5), pages 375-401, July.
  42. Sahar Milani, 2017. "The Impact of Environmental Policy Stringency on Industrial R&D Conditional on Pollution Intensity and Relocation Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 595-620, November.
  43. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
  44. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
  45. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
  46. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
  47. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "The adoption of green energy technologies: The role of policies in an international comparison," KOF Working papers 16-411, KOF Swiss Economic Institute, ETH Zurich.
  48. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
  49. Shouro Dasgupta & Enrica De Cian & Elena Verdolini, 2016. "The Political Economy of Energy Innovation," Working Papers 2016.35, Fondazione Eni Enrico Mattei.
  50. Tiziana Russo Spena & Nadia Di Paola, 2020. "Moving beyond the tensions in open environmental innovation towards a holistic perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 1961-1974, July.
  51. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
  52. Binbin Yang & Sang-Do Park, 2023. "Who Drives Carbon Neutrality in China? Text Mining and Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
  53. Cojoianu, Theodor F. & Clark, Gordon L. & Hoepner, Andreas G.F. & Veneri, Paolo & Wójcik, Dariusz, 2020. "Entrepreneurs for a low carbon world: How environmental knowledge and policy shape the creation and financing of green start-ups," Research Policy, Elsevier, vol. 49(6).
  54. Shouro Dasgupta & Enrica De Cian & Elena Verdolini, 2016. "The Political Economy of Energy Innovation," Working Papers 2016.35, Fondazione Eni Enrico Mattei.
  55. Lorena M. D'Agostino & Rosina Moreno, 2019. "Green regions and local firms' innovation," Papers in Regional Science, Wiley Blackwell, vol. 98(4), pages 1585-1608, August.
  56. repec:bof:bofrdp:urn:nbn:fi:bof-201512101465 is not listed on IDEAS
  57. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
  58. David Popp, 2020. "Promoting Clean Energy Innovation," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(04), pages 30-35, January.
  59. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  60. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
  61. David Popp & Francesco Vona & Myriam Grégoire-Zawilski & Giovanni Marin, 2022. "The Next Wave of Energy Innovation: Which Technologies? Which Skills?," CESifo Working Paper Series 9878, CESifo.
  62. Dong, Zhaoyingzi & Xia, Chuyu & Fang, Kai & Zhang, Weiwen, 2022. "Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control," Energy Policy, Elsevier, vol. 165(C).
  63. Inglesi-Lotz, R., 2019. "Energy research and R&D indicators: An LMDI decomposition analysis for the IEA Big 5 in energy research," Energy Policy, Elsevier, vol. 133(C).
  64. Yanbo Zhang & Xiang Li, 2022. "The Impact of the Green Finance Reform and Innovation Pilot Zone on the Green Innovation—Evidence from China," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
  65. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
  66. Nicolò Barbieri, 2015. "Environmental policy and invention crowding out. Unlocking the automotive industry from fossil fuel path dependence," SEEDS Working Papers 0615, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2015.
  67. Kim, Incheol & Pantzalis, Christos & Zhang, Zhengyi, 2021. "Multinationality and the value of green innovation," Journal of Corporate Finance, Elsevier, vol. 69(C).
  68. Deleidi, Matteo & Mazzucato, Mariana & Semieniuk, Gregor, 2020. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Energy Policy, Elsevier, vol. 140(C).
  69. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
  70. repec:zbw:bofrdp:2015_026 is not listed on IDEAS
  71. Min Hong & Zhenghui Li & Benjamin Drakeford, 2021. "Do the Green Credit Guidelines Affect Corporate Green Technology Innovation? Empirical Research from China," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
  72. Douglas Hanley & Daron Acemoglu & Ufuk Akcigit & William Kerr, 2014. "Transition to Clean Technology," Working Paper 534, Department of Economics, University of Pittsburgh, revised Jan 2014.
  73. Ascione, Grazia Sveva, 2023. "Technological diversity to address complex challenges: the contribution of American universities to sdgs," MPRA Paper 119452, University Library of Munich, Germany.
  74. Rexhäuser, Sascha & Löschel, Andreas, 2015. "Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level," Energy Policy, Elsevier, vol. 83(C), pages 206-217.
  75. Alessandra Colombelli & Francesco Quatraro, 2019. "Green start-ups and local knowledge spillovers from clean and dirty technologies," Small Business Economics, Springer, vol. 52(4), pages 773-792, April.
  76. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  77. Mirzadeh Phirouzabadi, Amir & Blackmore, Karen & Savage, David & Juniper, James, 2022. "Modelling and simulating a multi-modal and multi-dimensional technology interaction framework: The case of vehicle powertrain technologies in the US market," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  78. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).
  79. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
  80. Chun Jiang & Qiang Fu, 2019. "A Win-Win Outcome between Corporate Environmental Performance and Corporate Value: From the Perspective of Stakeholders," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
  81. Yun Li & Yingkai Tang & Kun Wang & Qiwei Zhao, 2019. "Environmental Regulation and China’s Regional Innovation Output—Empirical Research Based on Spatial Durbin Model," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
  82. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
  83. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
  84. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
  85. Dechezlepretre, Antoine & Sato, Misato, 2017. "The impacts of environmental regulations on competitiveness," LSE Research Online Documents on Economics 77700, London School of Economics and Political Science, LSE Library.
  86. Jing Li & Da Yan, 2021. "Exploration on the Mechanism of the Impact of Green Supply Chain Management on Enterprise Sustainable Development Performance," Sustainability, MDPI, vol. 13(17), pages 1-18, September.
  87. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
  88. Yun Chen & Da Wang & Wenxi Zhu & Yunfei Hou & Dingli Liu & Chongsen Ma & Tian Li & Yuan Yuan, 2023. "Effective Conditions for Achieving Carbon Unlocking Targets for Transport Infrastructure Development—Joint Analysis Based on PLS-SEM and NCA," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
  89. Roy, Jayjit & Yasar, Mahmut, 2015. "Energy efficiency and exporting: Evidence from firm-level data," Energy Economics, Elsevier, vol. 52(PA), pages 127-135.
  90. Sascha Rexhäuser & Christian Rammer, 2014. "Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(1), pages 145-167, January.
  91. Yuan, Gecheng & Ye, Qin & Sun, Yongping, 2021. "Financial innovation, information screening and industries’ green innovation — Industry-level evidence from the OECD," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
  92. Faria, João Ricardo & Tindall, Greg & Terjesen, Siri, 2022. "The Green Tobin's q: theory and evidence," Energy Economics, Elsevier, vol. 110(C).
  93. Ardito, Lorenzo & Ernst, Holger & Messeni Petruzzelli, Antonio, 2020. "The interplay between technology characteristics, R&D internationalisation, and new product introduction: Empirical evidence from the energy conservation sector," Technovation, Elsevier, vol. 96.
  94. N. N., 2016. "WIFO-Monatsberichte, Heft 11/2016," WIFO Monatsberichte (monthly reports), WIFO, vol. 89(11), November.
  95. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
  96. Eugenie Dugoua & Todd D. Gerarden, 2023. "Induced Innovation, Inventors, and the Energy Transition," CESifo Working Paper Series 10700, CESifo.
  97. Fang Yang & Qinfan Gan, 2021. "Impact of Regional Environmental Regulations on Taiwanese Investment in Mainland China," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
  98. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
  99. Kruse, Juergen, 2016. "Innovation in Green Energy Technologies and the Economic Performance of Firms," EWI Working Papers 2016-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  100. Corrocher, Nicoletta & Mancusi, Maria Luisa, 2021. "International collaborations in green energy technologies: What is the role of distance in environmental policy stringency?," Energy Policy, Elsevier, vol. 156(C).
  101. Wancheng Xie & Andrew Chapman & Taihua Yan, 2023. "Do Environmental Regulations Facilitate a Low-Carbon Transformation in China’s Resource-Based Cities?," IJERPH, MDPI, vol. 20(5), pages 1-23, March.
  102. Lorena D’Agostino, 2015. "How MNEs respond to environmental regulation: integrating the Porter hypothesis and the pollution haven hypothesis," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 32(2), pages 245-269, August.
  103. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.