IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v31y2009i3p342-347.html
   My bibliography  Save this item

Optimal blackouts: Empirical results on reducing the social cost of electricity outages through efficient regional rationing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alastaire S na ALINSATO, 2015. "Economic Valuation of Electrical Service Reliability for Households in Developing Country: A Censored Random Coefficient Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 352-359.
  2. Mubashir Qasim & Koji Kotani, 2014. "An empirical analysis of energy shortage in Pakistan," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 21(1), pages 137-166, June.
  3. de Nooij, Michiel & Baarsma, Barbara & Bloemhof, Gabriël & Slootweg, Han & Dijk, Harold, 2010. "Development and application of a cost-benefit framework for energy reliability: Using probabilistic methods in network planning and regulation to enhance social welfare: The N-1 rule," Energy Economics, Elsevier, vol. 32(6), pages 1277-1282, November.
  4. Ovaere, Marten & Heylen, Evelyn & Proost, Stef & Deconinck, Geert & Van Hertem, Dirk, 2019. "How detailed value of lost load data impact power system reliability decisions," Energy Policy, Elsevier, vol. 132(C), pages 1064-1075.
  5. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.
  6. Marcos Perroni & Luciano Luiz Dalazen & Wesley Vieira da Silva & Sergio Eduardo Gouv a da Costa & Claudimar Pereira da Veiga, 2015. "Evolution of Risks for Energy Companies from the Energy Efficiency Perspective: The Brazilian Case," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 612-623.
  7. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
  8. Abdisa, Lamessa Tariku, 2018. "Power Outages, Its Economic Cost and Firm Performance: Evidence From Ethiopia," MPRA Paper 88217, University Library of Munich, Germany.
  9. Kerianne Lawson, 2022. "Electricity outages and residential fires: Evidence from Cape Town, South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 90(4), pages 469-485, December.
  10. Growitsch Christian & Malischek Raimund & Nick Sebastian & Wetzel Heike, 2015. "The Costs of Power Interruptions in Germany: A Regional and Sectoral Analysis," German Economic Review, De Gruyter, vol. 16(3), pages 307-323, August.
  11. Wolf, André & Wenzel, Lars, 2015. "Welfare implications of power rationing: An application to Germany," Energy, Elsevier, vol. 84(C), pages 53-62.
  12. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).
  13. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
  14. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
  15. Lachman, Daniël A., 2011. "Leapfrog to the future: Energy scenarios and strategies for Suriname to 2050," Energy Policy, Elsevier, vol. 39(9), pages 5035-5044, September.
  16. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2021. "Are electricity system outages and the generation mix related? Evidence from NSW, Australia," Energy Economics, Elsevier, vol. 99(C).
  17. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
  18. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
  19. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
  20. Morrissey, Karyn & Plater, Andrew & Dean, Mary, 2018. "The cost of electric power outages in the residential sector: A willingness to pay approach," Applied Energy, Elsevier, vol. 212(C), pages 141-150.
  21. Hunt., Julian David & Stilpen, Daniel & de Freitas, Marcos Aurélio Vasconcelos, 2018. "A review of the causes, impacts and solutions for electricity supply crises in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 208-222.
  22. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
  23. Zachariadis, Theodoros & Poullikkas, Andreas, 2012. "The costs of power outages: A case study from Cyprus," Energy Policy, Elsevier, vol. 51(C), pages 630-641.
  24. Zhang, Lijun & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems," Applied Energy, Elsevier, vol. 119(C), pages 306-313.
  25. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
  26. Kim, Kayoung & Nam, Heekoo & Cho, Youngsang, 2015. "Estimation of the inconvenience cost of a rolling blackout in the residential sector: The case of South Korea," Energy Policy, Elsevier, vol. 76(C), pages 76-86.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.