IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v97y2012icp714-722.html
   My bibliography  Save this item

Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. José Manuel Salmerón Lissén & Laura Romero Rodríguez & Francisco Durán Parejo & Francisco José Sánchez de la Flor, 2018. "An Economic, Energy, and Environmental Analysis of PV/Micro-CHP Hybrid Systems: A Case Study of a Tertiary Building," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
  2. Martínez-Lera, S. & Ballester, J. & Martínez-Lera, J., 2013. "Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings," Applied Energy, Elsevier, vol. 106(C), pages 127-142.
  3. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  4. Anvari, Simin & Desideri, Umberto & Taghavifar, Hadi, 2020. "Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy," Applied Energy, Elsevier, vol. 258(C).
  5. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
  6. Fubara, Tekena Craig & Cecelja, Franjo & Yang, Aidong, 2014. "Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption," Applied Energy, Elsevier, vol. 114(C), pages 327-334.
  7. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
  8. Santoso Wibowo & Srimannarayana Grandhi, 2018. "Multicriteria Assessment of Combined Heat and Power Systems," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
  9. Hu, Mengqi, 2015. "A data-driven feed-forward decision framework for building clusters operation under uncertainty," Applied Energy, Elsevier, vol. 141(C), pages 229-237.
  10. Hong, Taehoon & Kim, Daeho & Koo, Choongwan & Kim, Jimin, 2014. "Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 127(C), pages 11-24.
  11. Zhonghua Wang & Zenggang Yue & Wei Wang & Chenghui Ma & Xiaoguang Li & Changmin Guo & Yuanbin Zhao, 2024. "Anti-Freezing Study of High-Level Water-Collecting Natural Draft Wet-Cooling Tower Based on Its Water Temperature Distribution Characteristics," Energies, MDPI, vol. 17(3), pages 1-13, January.
  12. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
  13. De Lorenzi, Andrea & Gambarotta, Agostino & Marzi, Emanuela & Morini, Mirko & Saletti, Costanza, 2022. "Predictive control of a combined heat and power plant for grid flexibility under demand uncertainty," Applied Energy, Elsevier, vol. 314(C).
  14. Zhang, Yin & Wang, Xin & Zhuo, Siwen & Zhang, Yinping, 2016. "Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply–demand mismatch," Applied Energy, Elsevier, vol. 167(C), pages 125-134.
  15. Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2013. "Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications," Applied Energy, Elsevier, vol. 112(C), pages 205-214.
  16. Nora Cadau & Andrea De Lorenzi & Agostino Gambarotta & Mirko Morini & Michele Rossi, 2019. "Development and Analysis of a Multi-Node Dynamic Model for the Simulation of Stratified Thermal Energy Storage," Energies, MDPI, vol. 12(22), pages 1-22, November.
  17. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
  18. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Kashiwaya, Yoshiaki, 2014. "Operational analysis of a small-capacity cogeneration system with a gas hydrate battery," Energy, Elsevier, vol. 74(C), pages 810-828.
  19. Zhang, Yin & Wang, Xin & Zhang, Yinping & Zhuo, Siwen, 2016. "A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system," Energy, Elsevier, vol. 114(C), pages 885-894.
  20. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
  21. Alahäivälä, Antti & Heß, Tobias & Cao, Sunliang & Lehtonen, Matti, 2015. "Analyzing the optimal coordination of a residential micro-CHP system with a power sink," Applied Energy, Elsevier, vol. 149(C), pages 326-337.
  22. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
  23. Ruan, Yingjun & Liu, Qingrong & Li, Zhengwei & Wu, Jiazheng, 2016. "Optimization and analysis of Building Combined Cooling, Heating and Power (BCHP) plants with chilled ice thermal storage system," Applied Energy, Elsevier, vol. 179(C), pages 738-754.
  24. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
  25. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
  26. Schütz, Thomas & Schraven, Markus Hans & Remy, Sebastian & Granacher, Julia & Kemetmüller, Dominik & Fuchs, Marcus & Müller, Dirk, 2017. "Optimal design of energy conversion units for residential buildings considering German market conditions," Energy, Elsevier, vol. 139(C), pages 895-915.
  27. Attolini, G. & Bosi, M. & Ferrari, C. & Melino, F., 2013. "Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size," Applied Energy, Elsevier, vol. 103(C), pages 618-626.
  28. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2015. "Influence of heat dumping on the operation of residential micro-CHP systems," Applied Energy, Elsevier, vol. 160(C), pages 206-220.
  29. Giulia Mancò & Elisa Guelpa & Vittorio Verda, 2021. "Optimal Integration of Renewable Sources and Latent Heat Storages for Residential Application," Energies, MDPI, vol. 14(17), pages 1-22, September.
  30. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
  31. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
  32. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
  33. Remiorz, Leszek & Kotowicz, Janusz & Uchman, Wojciech, 2018. "Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump," Energy, Elsevier, vol. 148(C), pages 134-147.
  34. Merkel, Erik & McKenna, Russell & Fichtner, Wolf, 2015. "Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK," Applied Energy, Elsevier, vol. 140(C), pages 120-134.
  35. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
  36. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
  37. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
  38. Wojciech Uchman & Janusz Kotowicz & Leszek Remiorz, 2020. "An Experimental Data-Driven Model of a Micro-Cogeneration Installation for Time-Domain Simulation and System Analysis," Energies, MDPI, vol. 13(11), pages 1-26, June.
  39. Bartnik, Ryszard & Buryn, Zbigniew & Hnydiuk-Stefan, Anna, 2021. "Thermodynamic and economic analysis of effect of heat accumulator volume on the specific cost of heat production in the gas-steam CHP plant," Energy, Elsevier, vol. 230(C).
  40. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
  41. Ummenhofer, C.D. & Heyer, G. & Roediger, T. & Olsen, J. & Page, J., 2017. "Improved system control logic for an MCHP system incorporating electric storage," Applied Energy, Elsevier, vol. 203(C), pages 737-751.
  42. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
  43. Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.
  44. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
  45. Gelegenis, John & Mavrotas, George, 2017. "An analytical study of critical factors in residential cogeneration optimization," Applied Energy, Elsevier, vol. 185(P2), pages 1625-1632.
  46. Löbberding, Laurens & Madlener, Reinhard, 2019. "Techno-economic analysis of micro fuel cell cogeneration and storage in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1603-1613.
  47. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
  48. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
  49. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
  50. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
  51. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2018. "Impact of rooftop photovoltaics and centralized energy storage on the design and operation of a residential CHP system," Applied Energy, Elsevier, vol. 222(C), pages 280-299.
  52. Rahman, Aowabin & Smith, Amanda D., 2018. "Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms," Applied Energy, Elsevier, vol. 228(C), pages 108-121.
  53. Haupt, Axel & Müller, Karsten, 2017. "Integration of a LOHC storage into a heat-controlled CHP system," Energy, Elsevier, vol. 118(C), pages 1123-1130.
  54. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
  55. Fuentes-Cortés, Luis Fabián & Ma, Yan & Ponce-Ortega, Jose María & Ruiz-Mercado, Gerardo & Zavala, Victor M., 2018. "Valuation of water and emissions in energy systems," Applied Energy, Elsevier, vol. 210(C), pages 518-528.
  56. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
  57. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  58. Tarragona, Joan & Fernández, Cèsar & de Gracia, Alvaro, 2020. "Model predictive control applied to a heating system with PV panels and thermal energy storage," Energy, Elsevier, vol. 197(C).
  59. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
  60. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
  61. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
  62. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
  63. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Terés-Zubiaga, J., 2020. "Analysis of the integration of micro-cogeneration units in space heating and domestic hot water plants," Energy, Elsevier, vol. 200(C).
  64. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
  65. Vijay, Avinash & Hawkes, Adam, 2019. "Demand side flexibility from residential heating to absorb surplus renewables in low carbon futures," Renewable Energy, Elsevier, vol. 138(C), pages 598-609.
  66. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2015. "Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study," Applied Energy, Elsevier, vol. 140(C), pages 171-183.
  67. Gbemi Oluleye & John Allison & Nicolas Kelly & Adam D. Hawkes, 2018. "An Optimisation Study on Integrating and Incentivising Thermal Energy Storage (TES) in a Dwelling Energy System," Energies, MDPI, vol. 11(5), pages 1-17, April.
  68. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
  69. Marguerite, C. & Andresen, G.B. & Dahl, M., 2018. "Multi-criteria analysis of storages integration and operation solutions into the district heating network of Aarhus – A simulation case study," Energy, Elsevier, vol. 158(C), pages 81-88.
  70. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
  71. Ancona, M.A. & Bianchi, M. & Diolaiti, E. & Giannuzzi, A. & Marano, B. & Melino, F. & Peretto, A., 2017. "A novel solar concentrator system for combined heat and power application in residential sector," Applied Energy, Elsevier, vol. 185(P2), pages 1199-1209.
  72. Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
  73. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
  74. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
  75. Di Florio, Giuseppe & Macchi, Edoardo Gino & Mongibello, Luigi & Baratto, Maria Camilla & Basosi, Riccardo & Busi, Elena & Caliano, Martina & Cigolotti, Viviana & Testi, Matteo & Trini, Martina, 2021. "Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid," Applied Energy, Elsevier, vol. 285(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.