IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v140y2015icp171-183.html
   My bibliography  Save this article

Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study

Author

Listed:
  • Asaee, S. Rasoul
  • Ugursal, V. Ismet
  • Beausoleil-Morrison, Ian

Abstract

A preliminary techno-economic evaluation of retrofitting reciprocating internal combustion engine based cogeneration into existing Canadian houses for the purpose of achieving or approaching net-zero energy rating is presented. Primary energy and electricity consumption, associated greenhouse gas emissions and tolerable capital cost are used as indicators. A whole building simulation model was used to simulate the performance of a commonly used cogeneration system architecture with thermal storage in “typical” single storey houses located in Halifax, Montreal, Toronto, Edmonton and Vancouver, representing the five major climatic regions of Canada. The system is assumed to sell excess electricity to the grid at the purchase price. A high efficiency auxiliary boiler is included to supply heat when cogeneration unit capacity is not sufficient to meet the heating load. The effect of thermal storage capacity, interest rate and acceptable payback period on the overall performance was evaluated through a sensitivity analysis. The findings suggest that internal combustion engine based cogeneration provides a promising option to achieve net-zero energy rating for Canadian houses, and therefore more detailed studies focusing on the entire Canadian housing stock are needed.

Suggested Citation

  • Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2015. "Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study," Applied Energy, Elsevier, vol. 140(C), pages 171-183.
  • Handle: RePEc:eee:appene:v:140:y:2015:i:c:p:171-183
    DOI: 10.1016/j.apenergy.2014.11.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914012379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.11.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    2. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    3. Haeseldonckx, Dries & Peeters, Leen & Helsen, Lieve & D'haeseleer, William, 2007. "The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1227-1243, August.
    4. Bianchi, Michele & De Pascale, Andrea & Spina, Pier Ruggero, 2012. "Guidelines for residential micro-CHP systems design," Applied Energy, Elsevier, vol. 97(C), pages 673-685.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2017. "Techno-economic assessment of solar assisted heat pump system retrofit in the Canadian housing stock," Applied Energy, Elsevier, vol. 190(C), pages 439-452.
    2. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
    4. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    5. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
    6. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2019. "Development and analysis of strategies to facilitate the conversion of Canadian houses into net zero energy buildings," Energy Policy, Elsevier, vol. 126(C), pages 118-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    2. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    3. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    4. Giulia Mancò & Elisa Guelpa & Vittorio Verda, 2021. "Optimal Integration of Renewable Sources and Latent Heat Storages for Residential Application," Energies, MDPI, vol. 14(17), pages 1-22, September.
    5. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    6. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    7. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    8. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    9. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    11. Gelegenis, John & Mavrotas, George, 2017. "An analytical study of critical factors in residential cogeneration optimization," Applied Energy, Elsevier, vol. 185(P2), pages 1625-1632.
    12. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    13. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    14. Fubara, Tekena Craig & Cecelja, Franjo & Yang, Aidong, 2014. "Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption," Applied Energy, Elsevier, vol. 114(C), pages 327-334.
    15. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
    16. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
    17. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    18. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    19. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
    20. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:140:y:2015:i:c:p:171-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.