IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v179y2016icp553-564.html
   My bibliography  Save this item

Simulating low-carbon electricity supply for Australia

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
  2. Janssen, Jacob L.L.C.C. & Weeda, Marcel & Detz, Remko J. & van der Zwaan, Bob, 2022. "Country-specific cost projections for renewable hydrogen production through off-grid electricity systems," Applied Energy, Elsevier, vol. 309(C).
  3. Graham Palmer, 2017. "A Framework for Incorporating EROI into Electrical Storage," Biophysical Economics and Resource Quality, Springer, vol. 2(2), pages 1-19, June.
  4. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
  5. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
  6. Cheung, Grace & Davies, Peter J., 2017. "In the transformation of energy systems: what is holding Australia back?," Energy Policy, Elsevier, vol. 109(C), pages 96-108.
  7. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
  8. Cole, Wesley & Antonysamy, Adithya & Brown, Patrick & Sergi, Brian & Mai, Trieu & Denholm, Paul, 2023. "How much might it cost to decarbonize the power sector? It depends on the metric," Energy, Elsevier, vol. 276(C).
  9. Trainer, Ted, 2022. "A technical critique of the Green New Deal," Ecological Economics, Elsevier, vol. 195(C).
  10. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
  11. Graham Palmer & Joshua Floyd, 2017. "An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-20, December.
  12. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
  13. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
  14. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
  15. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
  16. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
  17. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
  18. Chaudry, Modassar & Jayasuriya, Lahiru & Jenkins, Nick, 2021. "Modelling of integrated local energy systems: Low-carbon energy supply strategies for the Oxford-Cambridge arc region," Energy Policy, Elsevier, vol. 157(C).
  19. Sigrist, L. & Lobato, E. & Rouco, L. & Gazzino, M. & Cantu, M., 2017. "Economic assessment of smart grid initiatives for island power systems," Applied Energy, Elsevier, vol. 189(C), pages 403-415.
  20. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  21. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
  22. Lu, Bin & Blakers, Andrew & Stocks, Matthew, 2017. "90–100% renewable electricity for the South West Interconnected System of Western Australia," Energy, Elsevier, vol. 122(C), pages 663-674.
  23. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  24. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  25. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
  26. Trainer, Ted, 2018. "Some factors that would affect the retail price for 100% Australian renewable electricity," Energy Policy, Elsevier, vol. 116(C), pages 165-169.
  27. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
  28. Tino Aboumahboub & Robert J. Brecha & Himalaya Bir Shrestha & Ursula Fuentes & Andreas Geiges & William Hare & Michiel Schaeffer & Lara Welder & Matthew J. Gidden, 2020. "Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors," Energies, MDPI, vol. 13(15), pages 1-39, July.
  29. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
  30. Li, Mengyu & Lenzen, Manfred & Wang, Dai & Nansai, Keisuke, 2020. "GIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid," Applied Energy, Elsevier, vol. 262(C).
  31. Howard, Bahareh Sara & Hamilton, Nicholas E. & Diesendorf, Mark & Wiedmann, Thomas, 2018. "Modeling the carbon budget of the Australian electricity sector's transition to renewable energy," Renewable Energy, Elsevier, vol. 125(C), pages 712-728.
  32. Trainer, Ted, 2019. "Some questions concerning the Blakers et al. case that pumped hydro storage can enable 100% electricity supply," Energy Policy, Elsevier, vol. 128(C), pages 470-475.
  33. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  34. Jefferson, Michael, 2018. "Renewable and low carbon technologies policy," Energy Policy, Elsevier, vol. 123(C), pages 367-372.
  35. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  36. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.