IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/204559.html
   My bibliography  Save this paper

Markets for Local Flexibility in Distribution Networks

Author

Listed:
  • Radecke, Julia
  • Hefele, Joseph
  • Hirth, Lion

Abstract

The three D’s of the energy transformation – decarbonization, decentralization and digitalization – provide both chal-lenges and opportunities for distribution grids. Small-scale generation, batteries, electric heating, and e-mobility may put grids under considerable strain. However, if operated smartly, they also represent a deep pool of flexibility that can help grid operators relieve congestion and defer investment. One way of incentivizing such resources is to implement local markets for flexibility. In Europe, at least two dozen research pilots, stakeholder initiatives, and business cases have proposed specific designs for such markets. This paper provides an overview and analysis of these proposals. With many proposals being poorly documented, we largely rely on interviews for details on market design. We find that only one third of proposals allow free price formation, hence, despite their names, most are not what we consider a market. None of the proposals aims to replace existing congestion management mechanisms; rather they are meant as complementary tools. Usually markets employ dispatch payments; only few remunerate the reservation of flexibility availability. Though most proposals acknowledge market power and strategic interaction with other electricity markets (“inc-dec gaming”), few have developed concrete measures to address these problems. As they are in an early stage of development, market designs may still evolve.

Suggested Citation

  • Radecke, Julia & Hefele, Joseph & Hirth, Lion, 2019. "Markets for Local Flexibility in Distribution Networks," EconStor Preprints 204559, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:204559
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/204559/1/Radecke%2c%20Hefele%20%26%20Hirth%202019%20-%20Markets%20for%20Local%20Flexibility%20in%20Distribution%20Networks.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Fanghui & Wang, Gaowang, 2019. "The Demand for Status and Optimal Capital Taxation," MPRA Paper 96076, University Library of Munich, Germany.
    2. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    4. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    5. Krista J. Li, 2019. "Status Goods and Vertical Line Extensions," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 103-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    2. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    3. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    4. Stig Ødegaard Ottesen & Martin Haug & Heidi S. Nygård, 2020. "A Framework for Offering Short-Term Demand-Side Flexibility to a Flexibility Marketplace," Energies, MDPI, vol. 13(14), pages 1-17, July.
    5. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    6. Carlo Schmitt & Felix Gaumnitz & Andreas Blank & Olivier Rebenaque & Théo Dronne & Arnault Martin & Philippe Vassilopoulos & Albert Moser & Fabien Roques, 2021. "Framework for Deterministic Assessment of Risk-Averse Participation in Local Flexibility Markets †," Energies, MDPI, vol. 14(11), pages 1-34, May.
    7. Heilmann, Erik & Klempp, Nikolai & Wetzel, Heike, 2020. "Design of regional flexibility markets for electricity: A product classification framework for and application to German pilot projects," Utilities Policy, Elsevier, vol. 67(C).
    8. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Erik Heilmann, 2021. "The impact of transparency policies on local flexibility markets in electrical distribution networks: A case study with artificial neural network forecasts," MAGKS Papers on Economics 202141, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    10. Michel Zade & Zhengjie You & Babu Kumaran Nalini & Peter Tzscheutschler & Ulrich Wagner, 2020. "Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study," Energies, MDPI, vol. 13(21), pages 1-21, October.
    11. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    12. Zhengjie You & Michel Zade & Babu Kumaran Nalini & Peter Tzscheutschler, 2021. "Flexibility Estimation of Residential Heat Pumps under Heat Demand Uncertainty," Energies, MDPI, vol. 14(18), pages 1-19, September.
    13. Orlando Valarezo & Tomás Gómez & José Pablo Chaves-Avila & Leandro Lind & Mauricio Correa & David Ulrich Ziegler & Rodrigo Escobar, 2021. "Analysis of New Flexibility Market Models in Europe," Energies, MDPI, vol. 14(12), pages 1-24, June.
    14. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    2. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    4. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    5. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    6. Ho, Foo Nin & Wong, Jared & Brodowsky, Glen, 2023. "Does masstige offer the prestige of luxury without the social costs? Status and warmth perceptions from masstige and luxury signals," Journal of Business Research, Elsevier, vol. 155(PA).
    7. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    8. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    9. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    10. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    11. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    13. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    14. Lundin, Erik, 2022. "Geographic price granularity and investments in wind power: Evidence from a Swedish electricity market splitting reform," Energy Economics, Elsevier, vol. 113(C).
    15. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    16. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    17. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Yang Liu & Tongshuai Qiao & Liyan Han, 2022. "Does clean energy matter? Revisiting the spillovers between energy and foreign exchange markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(11), pages 2068-2083, November.
    19. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    20. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:204559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.