Advanced Search
MyIDEAS: Login

The Statistical Mechanics of Best-Response Strategy Revision

Contents:

Author Info

  • Lawrence Blume

Abstract

I continue the study, begun in Blume (1993), of stochastic strategy revision processes in large player populations where the range of interaction between players is small. Each player interacts directly with only a finite set of neighbors, but any two players indirectly interact through a finite chain of direct interactions. The purpose of this paper is to compare local strategic interaction with global strategic interaction when players update their choice according to the (myopic) best-response rule. I show that randomizing the order in which players update their strategic choice is sufficient to achieve coordination on the risk-dominant strategy in symmetric $2\times 2$ coordination games. The ``persistant randomness'' which is necessary to achieve similar coordination when the range of interaction is global is replaced by spatial variation in choice in the initial condition when strategic interactions are local. An extension of the risk-dominance idea gives the same convergence result for $K\times K$ games with strategic complementarities. Similar results for $K\times K$ pure coordination games and potential games are also presented.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/game/papers/9307/9307001.pdf
Download Restriction: no

File URL: http://128.118.178.162/eps/game/papers/9307/9307001.ps.gz
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Game Theory and Information with number 9307001.

as in new window
Length: 29 pages
Date of creation: 21 Jul 1993
Date of revision: 26 Jan 1994
Handle: RePEc:wpa:wuwpga:9307001

Note: 29 pages, plain TeX with two tables, all macros included. This new version extends the results of the previous version to games with strategic complementarities and some other K x K games.
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-71, September.
  2. Theodore C. Bergstrom, . "On the Evolution of Altruistic Ethical Rules for Siblings," ELSE working papers 017, ESRC Centre on Economics Learning and Social Evolution.
  3. Kandori, M. & Mailath, G.J., 1991. "Learning, Mutation, And Long Run Equilibria In Games," Papers 71, Princeton, Woodrow Wilson School - John M. Olin Program.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:9307001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.