IDEAS home Printed from https://ideas.repec.org/p/unm/unumer/2006025.html
   My bibliography  Save this paper

Diffusion Paths for Micro Cogeneration Using Hydrogen in the Netherlands

Author

Listed:
  • Taanman, Mattijs

    (Dutch Research Institute For Transitions, Erasmus University Rotterdam)

  • Groot, Arend de

    (ECN)

  • Kemp, René

    (UNU-MERIT and TNO-STB)

  • Verspagen, Bart

    (Eindhoven University of Technology and TIK, University of Oslo)

Abstract

We estimate the diffusion of micro cogeneration systems (MiCoGen) using hydrogen produced from natural gas in the Netherlands for the 2000-2050 period on the basis of economical factors. The diffusion is important for the transition to a hydrogen economy based on renewables, with natural gas paving the way for hydrogen from renewables which. For three scenarios full diffusion takes place in the period 2020-2050. The most important factors behind the diffusion are: growing energy demand, resulting in lower hydrogen costs and higher energy costs in the reference case and lower costs of MiCoGen stemming from learning economies. The model is very ad-vanced by considering all costs components for heterogeneous users which have been calculated for the entire diffusion period. It is the first threshold diffusion model that is being applied to the diffusion of technological clusters involving new or adapted infrastructures.

Suggested Citation

  • Taanman, Mattijs & Groot, Arend de & Kemp, René & Verspagen, Bart, 2006. "Diffusion Paths for Micro Cogeneration Using Hydrogen in the Netherlands," MERIT Working Papers 2006-025, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  • Handle: RePEc:unm:unumer:2006025
    as

    Download full text from publisher

    File URL: https://www.merit.unu.edu/publications/wppdf/2006/wp2006-025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Wolf, D. & Smeers, Y., 1996. "Optimal dimensioning of pipe networks with application to gas transmission networks," LIDAM Reprints CORE 1249, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. René Kemp, 1997. "Environmental Policy and Technical Change," Books, Edward Elgar Publishing, number 1187.
    3. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    4. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    5. René Kemp, 1998. "The Diffusion of Biological Waste-Water Treatment Plants in the Dutch Food and Beverage Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 113-136, July.
    6. Daniel de Wolf & Yves Smeers, 1996. "Optimal Dimensioning of Pipe Networks with Application to Gas Transmission Networks," Operations Research, INFORMS, vol. 44(4), pages 596-608, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sovacool, Benjamin K. & Brossmann, Brent, 2010. "Symbolic convergence and the hydrogen economy," Energy Policy, Elsevier, vol. 38(4), pages 1999-2012, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    2. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    3. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    6. AZOMAHOU, Théophile & BOUCEKKINE, Raouf & NGUYEN-VAN, Phu, 2009. "Promoting clean technologies under imperfect competition," LIDAM Discussion Papers CORE 2009011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    8. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    9. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    10. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    11. René Kemp, 1998. "The Diffusion of Biological Waste-Water Treatment Plants in the Dutch Food and Beverage Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 113-136, July.
    12. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    13. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    14. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    15. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    16. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    17. del Río González, Pablo, 2009. "The empirical analysis of the determinants for environmental technological change: A research agenda," Ecological Economics, Elsevier, vol. 68(3), pages 861-878, January.
    18. Zhou, Jun & Zhao, Yunxiang & Fu, Tiantian & Zhou, Xuan & Liang, Guangchuan, 2022. "Dimension optimization for underground natural gas storage pipeline network coupling injection and production conditions," Energy, Elsevier, vol. 256(C).
    19. Mazzanti, Massimiliano & Zoboli, Roberto, 2006. "Economic instruments and induced innovation: The European policies on end-of-life vehicles," Ecological Economics, Elsevier, vol. 58(2), pages 318-337, June.
    20. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.

    More about this item

    Keywords

    diffusion model; hydrogen; hydrogen economy; micro cogeneration;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:unumer:2006025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ad Notten (email available below). General contact details of provider: https://edirc.repec.org/data/meritnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.