IDEAS home Printed from https://ideas.repec.org/p/ucy/cypeua/08-2022.html
   My bibliography  Save this paper

Digitalization and Resilience to Disaggregate Shocks

Author

Listed:
  • Florentine Schwark
  • Andreas Tryphonides

Abstract

How does digital technology affect the transmission of idiosyncratic shocks to the gross domestic product? We show that shock amplification depends on the elasticity of substitution and the relative abundance of inputs. Using an IV approach, we find a positive effect of digital intensity on substitution elasticities between capital and labor and between value-added and intermediate inputs, respectively. We interpret our empirical results through the lens of the technology choice literature, attributing the effect to a change in the curvature of the technology frontier. We show that whether a higher elasticity of substitution dampens the propagation of sectoral shocks or not depends on a simple sufficient statistic, the relative abundance of intermediate inputs. Based on the latter, our estimates suggest that many sectors in selected European economies amplify shocks after digitalization, with a deteriorating trend in resilience between 1995 and 2017.

Suggested Citation

  • Florentine Schwark & Andreas Tryphonides, 2022. "Digitalization and Resilience to Disaggregate Shocks," University of Cyprus Working Papers in Economics 08-2022, University of Cyprus Department of Economics.
  • Handle: RePEc:ucy:cypeua:08-2022
    as

    Download full text from publisher

    File URL: https://papers.econ.ucy.ac.cy/RePEc/papers/08-2022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 807-835.
    2. Enghin Atalay, 2017. "How Important Are Sectoral Shocks?," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 254-280, October.
    3. Gene M. Grossman & Ezra Oberfield, 2021. "The Elusive Explanation for the Declining Labor Share," NBER Working Papers 29165, National Bureau of Economic Research, Inc.
    4. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    5. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    6. David M. Byrne & John G. Fernald & Marshall B. Reinsdorf, 2016. "Does the United States Have a Productivity Slowdown or a Measurement Problem?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 47(1 (Spring), pages 109-182.
    7. Daron Acemoglu & David Autor & David Dorn & Gordon H. Hanson & Brendan Price, 2014. "Return of the Solow Paradox? IT, Productivity, and Employment in US Manufacturing," American Economic Review, American Economic Association, vol. 104(5), pages 394-399, May.
    8. Gilbert Cette & Christian Clerc & Lea Bresson, 2015. "Contribution of ICT Diffusion to Labour Productivity Growth: The United States, Canada, the Eurozone, and the United Kingdom, 1970-2013," International Productivity Monitor, Centre for the Study of Living Standards, vol. 28, pages 81-88, Spring.
    9. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    10. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    11. David Rezza Baqaee & Emmanuel Farhi, 2019. "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem," Econometrica, Econometric Society, vol. 87(4), pages 1155-1203, July.
    12. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    13. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    14. Jakub Growiec, 2008. "A new class of production functions and an argument against purely labor‐augmenting technical change," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(4), pages 483-502, December.
    15. Erik Brynjolfsson & Lorin M. Hitt, 2003. "Computing Productivity: Firm-Level Evidence," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 793-808, November.
    16. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    17. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    18. Apedo Amah,Marie Christine & Avdiu,Besart & Cirera,Xavier & Vargas Da Cruz,Marcio Jose & Davies,Elwyn Adriaan Robin & Grover,Arti Goswami & Iacovone,Leonardo & Kilinc,Umut & Medvedev,Denis & Maduko,Fr, 2020. "Unmasking the Impact of COVID-19 on Businesses : Firm Level Evidence from Across the World," Policy Research Working Paper Series 9434, The World Bank.
    19. Growiec, Jakub, 2013. "A microfoundation for normalized CES production functions with factor-augmenting technical change," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2336-2350.
    20. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(2), pages 201-218.
    21. Durlauf, Steven N. & Kourtellos, Andros & Minkin, Artur, 2001. "The local Solow growth model," European Economic Review, Elsevier, vol. 45(4-6), pages 928-940, May.
    22. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    23. Miyagiwa, Kaz & Papageorgiou, Chris, 2007. "Endogenous aggregate elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2899-2919, September.
    24. Wolfgang Dauth & Sebastian Findeisen & Jens Suedekum & Nicole Woessner, 2021. "The Adjustment of Labor Markets to Robots [“Skills, Tasks and Technologies: Implications for Employment and Earnings]," Journal of the European Economic Association, European Economic Association, vol. 19(6), pages 3104-3153.
    25. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    26. Jorge Miranda-Pinto & Eric R. Young, 2022. "Flexibility and Frictions in Multisector Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 450-480, July.
    27. Diamond, Peter & McFadden, Daniel & Rodriguez, Miguel, 1978. "Measurement of the Elasticity of Factor Substitution and Bias of Technical Change," Histoy of Economic Thought Chapters, in: Fuss, Melvyn & McFadden, Daniel (ed.),Production Economics: A Dual Approach to Theory and Applications, volume 2, chapter 5, McMaster University Archive for the History of Economic Thought.
    28. Robert J. Gordon, 2015. "Secular Stagnation: A Supply-Side View," American Economic Review, American Economic Association, vol. 105(5), pages 54-59, May.
    29. Timothy F. Bresnahan, 2002. "Prospects for an Information-Technology-Led Productivity Surge," NBER Chapters, in: Innovation Policy and the Economy, Volume 2, pages 135-162, National Bureau of Economic Research, Inc.
    30. Gallipoli, Giovanni & Makridis, Christos A., 2018. "Structural transformation and the rise of information technology," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 91-110.
    31. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Productivity, Volume 3: Information Technology and the American Growth Resurgence," MIT Press Books, The MIT Press, edition 1, volume 3, number 0262101114, December.
    32. Bart van Ark, 2016. "The Productivity Paradox of the New Digital Economy," International Productivity Monitor, Centre for the Study of Living Standards, vol. 31, pages 3-18, Fall.
    33. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    34. Charles R. Hulten, 1978. "Growth Accounting with Intermediate Inputs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(3), pages 511-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    2. Growiec, Jakub & Mućk, Jakub, 2020. "Isoelastic Elasticity Of Substitution Production Functions," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1597-1634, October.
    3. Guimarães, Luís & Mazeda Gil, Pedro, 2022. "Explaining the Labor Share: Automation Vs Labor Market Institutions," Labour Economics, Elsevier, vol. 75(C).
    4. Maya Eden & Paul Gaggl, 2018. "On the Welfare Implications of Automation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 15-43, July.
    5. Kemnitz, Alexander & Knoblach, Michael, 2020. "Endogenous sigma-augmenting technological change: An R&D-based approach," CEPIE Working Papers 02/20, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    6. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    7. Jorge Miranda Pinto, 2021. "Production Network Structure, Service Share, and Aggregate Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 39, pages 146-173, January.
    8. Diane Coyle & Jen‐Chung Mei, 2023. "Diagnosing the UK productivity slowdown: which sectors matter and why?," Economica, London School of Economics and Political Science, vol. 90(359), pages 813-850, July.
    9. Elstner, Steffen & Grimme, Christian & Kecht, Valentin & Lehmann, Robert, 2022. "The diffusion of technological progress in ICT," European Economic Review, Elsevier, vol. 149(C).
    10. Ernesto Pasten & Raphael S. Schoenle & Michael Weber & Michael Weber, 2017. "Price Rigidities and the Granular Origins of Aggregate Fluctuations," CESifo Working Paper Series 6619, CESifo.
    11. Antosiewicz, Marek & Witajewski-Baltvilks, Jan, 2021. "Short- and long-run dynamics of energy demand," Energy Economics, Elsevier, vol. 103(C).
    12. Andrew T. Foerster & Andreas Hornstein & Pierre-Daniel G. Sarte & Mark W. Watson, 2022. "Aggregate Implications of Changing Sectoral Trends," Journal of Political Economy, University of Chicago Press, vol. 130(12), pages 3286-3333.
    13. Emmanuel Dhyne & Ayumu Ken Kikkawa & Glenn Magerman, 2022. "Imperfect Competition in Firm-to-Firm Trade," Journal of the European Economic Association, European Economic Association, vol. 20(5), pages 1933-1970.
    14. Gallipoli, Giovanni & Makridis, Christos A., 2018. "Structural transformation and the rise of information technology," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 91-110.
    15. Konings, Jozef & Dhyne, Emmanuel & Van den bosch, Jeroen & ,, 2018. "The Return on Information Technology: Who Benefits Most?," CEPR Discussion Papers 13246, C.E.P.R. Discussion Papers.
    16. Taniguchi, Hiroya & Yamada, Ken, 2022. "ICT capital–skill complementarity and wage inequality: Evidence from OECD countries," Labour Economics, Elsevier, vol. 76(C).
    17. Emannuel Dhyne & Joep Konings & Joep Konings & Stijn Vanormelingen,, 2018. "IT and productivity: A firm level analysis," Working Paper Research 346, National Bank of Belgium.
    18. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    19. Goldin, Ian & Koutroumpis, Pantelis & Lafond, François & Winkler, Julian, 2020. "Why is productivity slowing down?," MPRA Paper 99172, University Library of Munich, Germany.
    20. Sophie Osotimehin & Latchezar Popov, 2023. "Misallocation and Intersectoral linkages," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 177-198, December.

    More about this item

    Keywords

    Digitalization; Productivity; Elasticity of substitution; Domar weights; Resilience; Production Networks;
    All these keywords.

    JEL classification:

    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucy:cypeua:08-2022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.ucy.ac.cy/econ/?lang=en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.