IDEAS home Printed from https://ideas.repec.org/p/srt/wpaper/1220.html
   My bibliography  Save this paper

Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity

Author

Listed:
  • Sabrina Auci

    (University of Palermo, Department of Political Science and International Relations)

  • Andrea Pronti

    (University of Ferrara, Department of Economics and Management)

Abstract

This paper aims to analyse how the farmer’s choice on adopting innovative and sustainable irrigation systems such as water conservation and saving technologies (WCSTs), induced also by the climatic variability, would shape the economic resilience of the Italian agricultural farms by improving land productivity. A proper water management would increase efficiency in the agricultural activities by improving the use of water endowments and rising agricultural economic performances to address a sustainable development. We used an endogenous switching regression model considering two sources of endogeneity: the selection indicator and a continuous endogenous explanatory variable. By applying the control function method, a correlated random effects probit model for the selection equation and a correlated random effects model for the outcome equation are estimated in a panel data context based on a detailed micro-level dataset of all the Italian farms. Our results confirm that adopting WCSTs increases land productivity of adopters significantly.

Suggested Citation

  • Sabrina Auci & Andrea Pronti, 2020. "Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity," SEEDS Working Papers 1220, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2020.
  • Handle: RePEc:srt:wpaper:1220
    as

    Download full text from publisher

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1220.pdf
    File Function: First version, 2020
    Download Restriction: no

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1220.pdf
    File Function: Revised version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Musolino Dario & de Carli Alessandro & Massarutto Antonio, 2017. "Evaluation of socio-economic impact of drought events: the case of Po river basin," European Countryside, Sciendo, vol. 9(1), pages 163-176, March.
    2. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    3. Enrico De Angelis & Rodolfo Metulini & Vincenzo Bove & Massimo Riccaboni, 2017. "Virtual Water Trade and Bilateral Conflicts," Working Papers 02/2017, IMT School for Advanced Studies Lucca, revised Jan 2017.
    4. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    5. Robert Mendelsohn & Ariel Dinar, 2009. "Land Use and Climate Change Interactions," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 309-332, September.
    6. Julian M. Alston & Philip G. Pardey & Jennifer S. James & Matthew A. Anderson, 2009. "The Economics of Agricultural R&D," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 537-566, September.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    8. Awudu Abdulai & Wallace Huffman, 2014. "The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application," Land Economics, University of Wisconsin Press, vol. 90(1), pages 26-43.
    9. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    10. Sylvain Perret & Joe Stevens, 2006. "Socio-economic reasons for the low adoption of water conservation technologies by smallholder farmers in southern Africa: a review of the literature," Development Southern Africa, Taylor & Francis Journals, vol. 23(4), pages 461-476.
    11. Andrew D. Foster & Mark R. Rosenzweig, 2010. "Microeconomics of Technology Adoption," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 395-424, September.
    12. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    13. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    14. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2016. "A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching," Journal of Econometrics, Elsevier, vol. 190(2), pages 252-266.
    15. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    16. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    17. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    18. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    19. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    20. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    21. Kassie, Menale & Shiferaw, Bekele & Muricho, Geoffrey, 2011. "Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda," World Development, Elsevier, vol. 39(10), pages 1784-1795.
    22. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Is direct seeded rice a boon for economic performance? Empirical evidence from India," Food Policy, Elsevier, vol. 73(C), pages 10-18.
    23. Pardey, Philip G. & Alston, Julian M. & Ruttan, Vernon W., 2010. "The Economics of Innovation and Technical Change in Agriculture," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 939-984, Elsevier.
    24. Zeweld, Woldegebrial & Van Huylenbroeck, Guido & Tesfay, Girmay & Azadi, Hossein & Speelman, Stijn, 2020. "Sustainable agricultural practices, environmental risk mitigation and livelihood improvements: Empirical evidence from Northern Ethiopia," Land Use Policy, Elsevier, vol. 95(C).
    25. Menale Kassie & Paswel Marenya & Yohannis Tessema & Moti Jaleta & Di Zeng & Olaf Erenstein & Dil Rahut, 2018. "Measuring Farm and Market Level Economic Impacts of Improved Maize Production Technologies in Ethiopia: Evidence from Panel Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(1), pages 76-95, February.
    26. Georgina Moreno & David L. Sunding, 2005. "Joint Estimation of Technology Adoption and Land Allocation with Implications for the Design of Conservation Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1009-1019.
    27. Gershon Feder, 1982. "Adoption of Interrelated Agricultural Innovations: Complementarity and the Impacts of Risk, Scale, and Credit," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 94-101.
    28. da Cunha, Dênis Antônio & Coelho, Alexandre Bragança & Féres, José Gustavo, 2015. "Irrigation as an adaptive strategy to climate change: an economic perspective on Brazilian agriculture," Environment and Development Economics, Cambridge University Press, vol. 20(1), pages 57-79, February.
    29. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    30. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    31. Pascal L. Ghazalian & Ali Fakih, 2017. "R&D and Innovation in Food Processing Firms in Transition Countries," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 427-450, June.
    32. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Economic and Resource Conservation Perspectives of Direct Seeded Rice Planting Methods: Evidence from India," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258020, Agricultural and Applied Economics Association.
    33. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    34. Arega Alene & V. Manyong, 2007. "The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis," Empirical Economics, Springer, vol. 32(1), pages 141-159, April.
    35. Chrysovalantis Karafillis & Evaggelos Papanagiotou, 2011. "Innovation and total factor productivity in organic farming," Applied Economics, Taylor & Francis Journals, vol. 43(23), pages 3075-3087.
    36. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    37. C. Rosenzweig & F. Tubiello, 1997. "Impacts of global climate change on Mediterranean agrigulture: Current methodologies and future directions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(3), pages 219-232, September.
    38. Alfonso Expósito & Julio Berbel, 2019. "Drivers of Irrigation Water Productivity and Basin Closure Process: Analysis of the Guadalquivir River Basin (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1439-1450, March.
    39. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    40. Keith O. Fuglie & Darrell J. Bosch, 1995. "Economic and Environmental Implications of Soil Nitrogen Testing: A Switching-Regression Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 891-900.
    41. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auci, Sabrina & Pronti, Andrea, 2023. "Irrigation technology adaptation for a sustainable agriculture: A panel endogenous switching analysis on the Italian farmland productivity," Resource and Energy Economics, Elsevier, vol. 74(C).
    2. Sabrina Auci & Nicolò Barbieri & Manuela Coromaldi & Donatella Vignani, 2021. "Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 597-623, July.
    3. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    4. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    5. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    6. Manda, Julius & Alene, Arega D. & Tufa, Adane H. & Abdoulaye, Tahirou & Wossen, Tesfamicheal & Chikoye, David & Manyong, Victor, 2019. "The poverty impacts of improved cowpea varieties in Nigeria: A counterfactual analysis," World Development, Elsevier, vol. 122(C), pages 261-271.
    7. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    8. Pinget, Amandine, 2016. "Spécificités des déterminants des innovations environnementales : une approche appliquée aux PME [Specificities of determinants for environmental innovation : an approach applied to SMEs]," MPRA Paper 80108, University Library of Munich, Germany.
    9. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    10. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    11. Adolwa, Ivan Solomon & Schwarze, Stefan & Buerkert, Andreas, 2019. "Impacts of integrated soil fertility management on yield and household income: The case of Tamale (Ghana) and Kakamega (Kenya)," Ecological Economics, Elsevier, vol. 161(C), pages 186-192.
    12. Ainembabazi, John Herbert & Abdoulaye, Tahirou & Feleke, Shiferaw & Alene, Arega & Dontsop-Nguezet, Paul M. & Ndayisaba, Pierre Celestin & Hicintuka, Cyrille & Mapatano, Sylvain & Manyong, Victor, 2018. "Who benefits from which agricultural research-for-development technologies? Evidence from farm household poverty analysis in Central Africa," World Development, Elsevier, vol. 108(C), pages 28-46.
    13. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    14. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    16. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    17. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    18. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    19. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    20. Mishra, Ashok K. & Khanal, Aditya R. & Pede, Valerien O., 2017. "Is direct seeded rice a boon for economic performance? Empirical evidence from India," Food Policy, Elsevier, vol. 73(C), pages 10-18.

    More about this item

    Keywords

    Water scarcity; Innovation; Micro irrigation; Sustainable agriculture; Italian farms;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srt:wpaper:1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alessandro Palma (email available below). General contact details of provider: http://www.sustainability-seeds.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.