Advanced Search
MyIDEAS: Login to save this paper or follow this series

Efficient Estimation of Factor Models

Contents:

Author Info

  • In Choi

    ()
    (Department of Economics, Sogang University, Seoul)

Registered author(s):

Abstract

This paper considers the factor model Xt = Ft + et. Assuming a nor- mal distribution for the idiosyncratic error et conditional on the factors fFtg, conditional maximum likelihood estimators of the factor and factor- loading spaces are derived. These estimators are called generalized prin- cipal component estimators (GPCEs) without the normality assumption. This paper derives the asymptotic distributions of the GPCEs of the fac- tor and factor-loading space. It is shown that variances of the GPCEs of the common components are smaller than those of the principal com- ponent estimators studied in Bai (2003). The approximate variance of the forecasting error using the GPCE-based factor estimates is derived and shown to be smaller than that based on the principal component es- timators. The feasible GPCE (FGPCE) of factor space is shown to be asymptotically equivalent to the GPCE. The GPCEs and FGPCEs are shown to be more efficient than the principal component estimators in finite samples.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://163.239.165.41/RePEc/sgo/wpaper/CI_RIME_2007-01.pdf
File Function: Second version, 2010
Download Restriction: no

Bibliographic Info

Paper provided by Research Institute for Market Economy, Sogang University in its series Working Papers with number 0701.

as in new window
Length: 43 pages
Date of creation: Mar 2007
Date of revision: Dec 2010
Handle: RePEc:sgo:wpaper:0701

Contact details of provider:
Postal: 1 Sinsu-dong, Mapo-gu, Seoul 121-742
Phone: 82-2-705-8226
Fax: 82-2-705-8226
Email:
Web page: http://home.sogang.ac.kr/sites/sgrime
More information through EDIRC

Related research

Keywords: factor model; maximum likelihood estimation; generalized principal component estimation; feasible generalized principal component estimation;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, 03.
  2. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
  3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  4. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  5. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, 07.
  6. Jones, Christopher S., 2001. "Extracting factors from heteroskedastic asset returns," Journal of Financial Economics, Elsevier, vol. 62(2), pages 293-325, November.
  7. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-304, September.
  8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  9. MOON, Hyungsik Roger & PERRON, Benoit., 2002. "Testing for a Unit Root in Panels with Dynamic Factors," Cahiers de recherche 2002-18, Universite de Montreal, Departement de sciences economiques.
  10. Carlo Ambrogio Favero & Massimilano Marcellino & Francesca Neglia, . "Principal components at work: The empirical analysis of monetary policy with large datasets," Working Papers 223, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  11. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  12. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  13. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  14. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  15. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
  16. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1577-1606, December.
  17. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, 06.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
  2. In Choi & Seong Jin Hwang, 2012. "Forecasting Korean inflation," Working Papers 1202, Research Institute for Market Economy, Sogang University.
  3. Trapani, Lorenzo, 2013. "On bootstrapping panel factor series," Journal of Econometrics, Elsevier, vol. 172(1), pages 127-141.
  4. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
  5. In Choi, 2013. "Model Selection for Factor Analysis: Some New Criteria and Performance Comparisons," Working Papers 1209, Research Institute for Market Economy, Sogang University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sgo:wpaper:0701. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (In Choi).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.