Advanced Search
MyIDEAS: Login

Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing

Contents:

Author Info

  • D. THORLEUCHTER
  • D. VAN DEN POEL

    ()

  • A. PRINZIE

Abstract

We investigate the issue of predicting new customers as profitable based on information about existing customers in a business-to-business environment. In particular, we show how latent semantic concepts from textual information of existing customers’ websites can be used to uncover characteristics of websites of companies that will turn into profitable customers. Hence, the use of predictive analytics will help to identify new potential acquisition targets. Additionally, we show that a regression model based on these concepts is successful in the profitability prediction of new customers. In a case study, the acquisition process of a mail-order company is supported by creating a prioritized list of new customers generated by this approach. It is shown that the density of profitable customers in this list outperforms the density of profitable customers in traditional generated address lists (e. g. from list brokers). From a managerial point of view, this approach supports the identification of new business customers and helps to estimate the future profitability of these customers in a company. Consequently, the customer acquisition process can be targeted more effectively and efficiently. This leads to a competitive advantage for B2B companies and improves the acquisition process that is time- and cost-consuming with traditionally low conversion rates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_11_733.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Ghent University, Faculty of Economics and Business Administration in its series Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium with number 11/733.

as in new window
Length: 25 pages
Date of creation: Aug 2011
Date of revision:
Handle: RePEc:rug:rugwps:11/733

Contact details of provider:
Postal: Hoveniersberg 4, B-9000 Gent
Phone: ++ 32 (0) 9 264 34 61
Fax: ++ 32 (0) 9 264 35 92
Web page: http://www.ugent.be/eb
More information through EDIRC

Related research

Keywords: B-to-B marketing; Text Mining; Web Mining; Acquisition; SVD;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. D. Thorleuchter & D. Van Den Poel & A. Prinzie, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
  2. P. Baecke & D. Van Den Poel, 2009. "Data Augmentation by Predicting Spending Pleasure Using Commercially Available External Data," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/596, Ghent University, Faculty of Economics and Business Administration.
  3. D. Thorleuchter & D. Van Den Poel & A. Prinzie, 2009. "Mining Ideas from Textual Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/619, Ghent University, Faculty of Economics and Business Administration.
  4. K. W. De Bock & D. Van Den Poel & S. Manigart, 2009. "Predicting web site audience demographics for web advertising targeting using multi-web site clickstream data," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/618, Ghent University, Faculty of Economics and Business Administration.
  5. Van den Poel, Dirk & Buckinx, Wouter, 2005. "Predicting online-purchasing behaviour," European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
  6. Philippe Baecke & Dirk Van Den Poel, 2010. "Improving Purchasing Behavior Predictions By Data Augmentation With Situational Variables," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 853-872.
  7. K. Coussement & D. Van Den Poel, 2008. "Integrating the Voice of Customers through Call Center Emails into a Decision Support System for Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/502, Ghent University, Faculty of Economics and Business Administration.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.
  2. D. Thorleuchter & D. Van Den Poel, 2012. "Technology Classification with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/814, Ghent University, Faculty of Economics and Business Administration.
  3. D. Thorleuchter & D. Van Den Poel, 2012. "Protecting Research and Technology from Espionage," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/824, Ghent University, Faculty of Economics and Business Administration.
  4. P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
  5. D. Thorleuchter & D. Van Den Poel, 2012. "Improved Multilevel Security with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/811, Ghent University, Faculty of Economics and Business Administration.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:11/733. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.