Advanced Search
MyIDEAS: Login

On the existence of pure strategy equilibria in large generalized games with atomic players

Contents:

Author Info

  • Riascos Villegas, Alvaro
  • Torres-Martínez, Juan Pablo

Abstract

We consider a game with a continuum of players where only a finite number of them are atomic. Objective functions and admissible strategies may depend on the actions chosen by atomic players and on aggregate information about the actions chosen by non-atomic players. Only atomic players are required to have convex sets of admissible strategies and quasi-concave objective functions. We prove the existence of a pure strategy Nash equilibria. Thus, we extend to large generalized games with atomic players the results of equilibrium existence for non-atomic games of Schemeidler (1973) and Rath (1992). We do not obtain a pure strategy equilibrium by purification of mixed strategy equilibria. Thus, we have a direct proof of both Balder (1999, Theorem 2.1) and Balder (2002, Theorem 2.2.1), for the case where non-atomic players have a common non-empty set of strategies and integrable bounded codification of action profiles. Our main result is readily applicable to many interesting problems in general equilibrium. As an application, we extend Aumann (1966) result on the existence of equilibrium with a continuum of traders to a standard general equilibrium model with incomplete asset markets.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/36626/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 36626.

as in new window
Length:
Date of creation: Jan 2012
Date of revision:
Handle: RePEc:pra:mprapa:36626

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Generalized games; Non-convexities; Pure-strategy Nash equilibrium;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer, vol. 2(3), pages 427-33, July.
  2. Aumann, Robert J., 1976. "An elementary proof that integration preserves uppersemicontinuity," Journal of Mathematical Economics, Elsevier, vol. 3(1), pages 15-18, March.
  3. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
  4. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Correa, Sofía & Torres-Martínez, Juan Pablo, 2012. "Essential stability for large generalized games," MPRA Paper 36625, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36626. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.