Advanced Search
MyIDEAS: Login to save this paper or follow this series

When does approval voting make the "right choices"?

Contents:

Author Info

  • Brams, Steven J.
  • Kilgour, D. Marc

Abstract

We assume that a voter’s judgment about a proposal depends on (i) the proposal’s probability of being right (or good or just) and (ii) the voter’s probability of making a correct judgment about its rightness (or wrongness). Initially, the state of a proposal (right or wrong), and the correctness of a voter’s judgment about it, are assumed to be independent. If the average probability that voters are correct in their judgments is greater than ½, then the proposal with the greatest probability of being right will, in expectation, receive the greatest number of approval votes. This result holds, as well, when the voters’ probabilities of being correct depend on the state of the proposal; when the average probability that voters judge a proposal correctly is functionally related to the probability that it is right, provided that the function satisfies certain conditions; and when all voters follow a leader with an above-average probability of correctly judging proposals. However, it is possible that voters may more frequently select the proposal with the greatest probability of being right by reporting their independent judgments—as assumed by the Condorcet Jury Theorem—rather than by following any leader. Applications of these results to different kinds of voting situations are discussed.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/34262/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 34262.

as in new window
Length:
Date of creation: 22 Oct 2011
Date of revision:
Handle: RePEc:pra:mprapa:34262

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Approval voting; election systems; referendums; Condorcet jury theorem;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. I. D. Hill, 2008. "Mathematics and Democracy: Designing Better Voting and Fair-division Procedures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 1032-1033.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34262. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.