Advanced Search
MyIDEAS: Login

Some Results on the Solution of the Neoclassical Growth Model

Contents:

Author Info

  • Jesus Fernandez-Villaverde

    ()
    (Department of Economics, University of Pennsylvania)

  • Juan F. Rubio-Ramirez

    ()
    (Federal Reserve Bank of Atlanta)

Abstract

This paper presents some new results on the solution of the stochastic neoclassical growth model with leisure. We use the method of Judd (2003) to explore how to change variables in the computed policy functions that characterize the behavior of the economy. We find a simple close-form relation between the parameters of the linear and the loglinear solution of the model. We extend this approach to a general class of changes of variables and show how to find the optimal transformation. We report how in this way we reduce the average absolute Euler equation errors of the solution of the model by a factor of three. We also demonstrate how changes of variables correct for variations in the volatility of the economy even if we work with first order policy functions and how we can keep a linear representation of the laws of motion of the model if we use a nearly optimal transformation.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://economics.sas.upenn.edu/system/files/working-papers/04-002.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Penn Institute for Economic Research, Department of Economics, University of Pennsylvania in its series PIER Working Paper Archive with number 04-002.

as in new window
Length: 27 pages
Date of creation: 23 Nov 2003
Date of revision:
Handle: RePEc:pen:papers:04-002

Contact details of provider:
Postal: 3718 Locust Walk, Philadelphia, PA 19104
Phone: 215-898-9992
Fax: 215-573-2378
Email:
Web page: http://economics.sas.upenn.edu/pier
More information through EDIRC

Related research

Keywords: Dynamic Equilibrium Economies; Computational Methods; Changes of Variables; Linear and Nonlinear Solution Methods.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ellen R. McGrattan & Edward C. Prescott, 2001. "Is the Stock Market Overvalued?," NBER Working Papers 8077, National Bureau of Economic Research, Inc.
  2. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
  3. Judd, Kenneth L. & Guu, Sy-Ming, 1997. "Asymptotic methods for aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1025-1042, June.
  4. Uhlig, H., 1995. "A toolkit for analyzing nonlinear dynamic stochastic models easily," Discussion Paper 1995-97, Tilburg University, Center for Economic Research.
  5. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-11, July.
  6. Jinill Kim & Sunghyun Kim & Ernst Schaumburg & Christopher A. Sims, 2003. "Calculating and using second order accurate solutions of discrete time dynamic equilibrium models," Finance and Economics Discussion Series 2003-61, Board of Governors of the Federal Reserve System (U.S.).
  7. King, Robert G & Plosser, Charles I & Rebelo, Sergio T, 2002. "Production, Growth and Business Cycles: Technical Appendix," Computational Economics, Society for Computational Economics, vol. 20(1-2), pages 87-116, October.
  8. Jinill Kim & Sunghyun Kim & Ernst Schaumburg & Christopher A. Sims, 2003. "Calculating and Using Second Order Accurate Solutions of Discrete Time," Levine's Bibliography 666156000000000284, UCLA Department of Economics.
  9. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
  10. Christiano, Lawrence J, 1990. "Linear-Quadratic Approximation and Value-Function Iteration: A Comparison," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 99-113, January.
  11. Benhabib, Jess & Schmitt-Grohe, Stephanie & Uribe, Martin, 2001. "The Perils of Taylor Rules," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 40-69, January.
  12. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
  13. Wouter J. den Haan & Albert Marcet, 1993. "Accuracy in simulations," Economics Working Papers 42, Department of Economics and Business, Universitat Pompeu Fabra.
  14. Stephanie Schmitt-Grohe & Martin Uribe, 2002. "Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function," NBER Technical Working Papers 0282, National Bureau of Economic Research, Inc.
  15. John Y. Campbell, 1992. "Inspecting the Mechanism: An Analytical Approach to the Stochastic Growth Model," NBER Working Papers 4188, National Bureau of Economic Research, Inc.
  16. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
  17. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-70, November.
  18. S. Boragan Aruoba & Jesus Fernandez-Villaverde & Juan F. Rubio-Ramirez, 2003. "Comparing Solution Methods for Dynamic Equilibrium Economies," PIER Working Paper Archive 04-003, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jesus Fernandez-Villaverde & Juan Rubio & Manuel Santos, 2005. "Convergence Properties of the Likelihood of Computed Dynamic Models," NBER Technical Working Papers 0315, National Bureau of Economic Research, Inc.
  2. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pen:papers:04-002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dolly Guarini).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.