IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/25576.html
   My bibliography  Save this paper

Experimental Evidence on the Effect of Information and Pricing on Residential Electricity Consumption

Author

Listed:
  • Jesse Burkhardt
  • Kenneth Gillingham
  • Praveen K. Kopalle

Abstract

This study examines a field experiment in Texas that includes pricing and informational interventions to encourage energy conservation during summer peak load days when the social cost of generation is the highest. We estimate that our critical peak pricing intervention reduces electricity consumption by 14%. Using unique high frequency appliance-level data, we can attribute 74% of this response to air conditioning. In contrast, we find minimal response to active information provision and conservation appeals. A complementary experimental program also lowers nighttime prices during the off-peak season, providing the first evidence of electric vehicle loadshifting in response to price.

Suggested Citation

  • Jesse Burkhardt & Kenneth Gillingham & Praveen K. Kopalle, 2019. "Experimental Evidence on the Effect of Information and Pricing on Residential Electricity Consumption," NBER Working Papers 25576, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:25576
    Note: EEE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w25576.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uri Gneezy & Stephan Meier & Pedro Rey-Biel, 2011. "When and Why Incentives (Don't) Work to Modify Behavior," Journal of Economic Perspectives, American Economic Association, vol. 25(4), pages 191-210, Fall.
    2. Esther Duflo & Emmanuel Saez, 2003. "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 815-842.
    3. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    4. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    5. Michael D. Grubb & Matthew Osborne, 2015. "Cellular Service Demand: Biased Beliefs, Learning, and Bill Shock," American Economic Review, American Economic Association, vol. 105(1), pages 234-271, January.
    6. Alec Brandon & Paul Ferraro & John List & Robert Metcalfe & Michael Price & Florian Rundhammer, 2017. "Do the effects of social nudges persist? Theory and evidence from 38 natural field experiments," Natural Field Experiments 00598, The Field Experiments Website.
    7. Peter C. Reiss & Matthew W. White, 2008. "What changes energy consumption? Prices and public pressures," RAND Journal of Economics, RAND Corporation, vol. 39(3), pages 636-663, September.
    8. David P. Byrne & Andrea La Nauze & Leslie A. Martin, 2018. "Tell Me Something I Don’t Already Know: Informedness and the Impact of Information Programs," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 510-527, July.
    9. Steve Martin & Nicholas Rivers, 2018. "Information Provision, Market Incentives, and Household Electricity Consumption: Evidence from a Large-Scale Field Deployment," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 207-231.
    10. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    11. Alec Brandon & John A. List & Robert D. Metcalfe & Michael K. Price & Florian Rundhammer, 2019. "Testing for crowd out in social nudges: Evidence from a natural field experiment in the market for electricity," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(12), pages 5293-5298, March.
    12. Paul J. Ferraro & Michael K. Price, 2013. "Using Nonpecuniary Strategies to Influence Behavior: Evidence from a Large-Scale Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 64-73, March.
    13. Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
    14. Brian C. Prest, 2020. "Peaking Interest: How Awareness Drives the Effectiveness of Time-of-Use Electricity Pricing," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(1), pages 103-143.
    15. Hunt Allcott & Todd Rogers, 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," American Economic Review, American Economic Association, vol. 104(10), pages 3003-3037, October.
    16. Matthew Harding & Carlos Lamarche, 2016. "Empowering Consumers Through Data and Smart Technology: Experimental Evidence on the Consequences of Time‐of‐Use Electricity Pricing Policies," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 35(4), pages 906-931, September.
    17. Koichiro Ito & Takanori Ida & Makoto Tanaka, 2018. "Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 240-267, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacobsen, Grant D. & Stewart, James I., 2022. "How do consumers respond to price complexity? Experimental evidence from the power sector," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    2. Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
    3. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    4. Kapeller, Rudolf & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2023. "Incentivizing residential electricity consumers to increase demand during periods of high local solar generation," Energy Economics, Elsevier, vol. 127(PA).
    5. Bailey, Megan R. & Brown, David P. & Shaffer, Blake & Wolak, Frank A., 2023. "Show Me the Money! Incentives and Nudges to Shift Electric Vehicle Charge Timing," Working Papers 2023-8, University of Alberta, Department of Economics.
    6. Garnache, Cloé & Hernaes, Øystein & Imenes, Anders Gravir, 2022. "Which Households Respond to Electricity Peak Pricing amid High Levels of Electrification?," IZA Discussion Papers 15194, Institute of Labor Economics (IZA).
    7. Omar Isaac Asensio & Camila Z. Apablaza & M. Cade Lawson & Sarah Elizabeth Walsh, 2022. "A field experiment on workplace norms and electric vehicle charging etiquette," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 183-196, February.
    8. Linn, Joshua & Liang, Jing & Qiu, Yueming, 2022. "Rising US Income Inequality and Declining Residential Electricity Consumption: Is There a Link?," RFF Working Paper Series 22-09, Resources for the Future.
    9. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    10. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    11. Sibel Sozuer & Gregory S. Carpenter & Praveen K. Kopalle & Leigh M. McAlister & Donald R. Lehmann, 2020. "The past, present, and future of marketing strategy," Marketing Letters, Springer, vol. 31(2), pages 163-174, September.
    12. Andreas Gerster & Mark A. Andor & Lorenz Götte, 2020. "Disaggregate Consumption Feedback and Energy Conservation," CRC TR 224 Discussion Paper Series crctr224_2020_182, University of Bonn and University of Mannheim, Germany.
    13. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    14. Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023. "Intrinsic Motivation to Promote the Development of Renewable Energy : A Field Experiment from Household Demand," Working Papers hal-03977597, HAL.
    15. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    16. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    17. Jiyong Eom & Frank A. Wolak, 2020. "Breaking Routine for Energy Savings: An Appliance-level Analysis of Small Business Behavior under Dynamic Prices," NBER Working Papers 27263, National Bureau of Economic Research, Inc.
    18. Peter M. Schwarz, Nathan Duma, and Ercument Camadan, 2023. "Compensating Solar Prosumers Using Buy-All, Sell-All as an Alternative to Net Metering and Net Purchasing: Total Use, Rebound, and Cross Subsidization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Blonz, Joshua & Palmer, Karen & Wichman, Casey & Wietelman, Derek C., 2021. "Smart Thermostats, Automation, and Time-Varying Prices," RFF Working Paper Series 21-20, Resources for the Future.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ITO Koichiro & IDA Takanori & TANAKA Makoto, 2015. "The Persistence of Moral Suasion and Economic Incentives: Field experimental evidence from energy demand," Discussion papers 15014, Research Institute of Economy, Trade and Industry (RIETI).
    2. Tonke, Sebastian, 2020. "Imperfect Procedural Knowledge: Evidence from a Field Experiment to Encourage Water Conservation," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224536, Verein für Socialpolitik / German Economic Association.
    3. Lin, Boqiang & Zhu, Penghu, 2021. "Has increasing block pricing policy been perceived in China? Evidence from residential electricity use," Energy Economics, Elsevier, vol. 94(C).
    4. Michael K. Price, 2014. "Using field experiments to address environmental externalities and resource scarcity: major lessons learned and new directions for future research," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(4), pages 621-638.
    5. Jessoe, Katrina & Lade, Gabriel E. & Loge, Frank & Spang, Edward, 2021. "Residential water conservation during drought: Experimental evidence from three behavioral interventions," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    6. Andor, Mark Andreas & Götte, Lorenz & Price, Michael Keith & Schulze Tilling, Anna & Tomberg, Lukas, 2023. "Differences in how and why social comparisons and real-time feedback impact resource use: Evidence from a field experiment," Ruhr Economic Papers 1059, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022. "Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.
    8. Katrina Jessoe & Gabriel E. Lade & Frank Loge & Edward Spang, 2021. "Spillovers from Behavioral Interventions: Experimental Evidence from Water and Energy Use," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 315-346.
    9. Wang, Wenjie & Ida, Takanori & Shimada, Hideki, 2020. "Default effect versus active decision: Evidence from a field experiment in Los Alamos," European Economic Review, Elsevier, vol. 128(C).
    10. José A. Pellerano & Michael K. Price & Steven L. Puller & Gonzalo E. Sánchez, 2017. "Do Extrinsic Incentives Undermine Social Norms? Evidence from a Field Experiment in Energy Conservation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 413-428, July.
    11. Stojanovski, Ognen & Leslie, Gordon W. & Wolak, Frank A. & Huerta Wong, Juan Enrique & Thurber, Mark C., 2020. "Increasing the energy cognizance of electricity consumers in Mexico: Results from a field experiment," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
    12. Brülisauer, Marcel & Goette, Lorenz & Jiang, Zhengyi & Schmitz, Jan & Schubert, Renate, 2020. "Appliance-specific feedback and social comparisons: Evidence from a field experiment on energy conservation," Energy Policy, Elsevier, vol. 145(C).
    13. Francisco Costa & François Gerard, 2021. "Hysteresis and the Welfare Effect of Corrective Policies: Theory and Evidence from an Energy-Saving Program," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1705-1743.
    14. Andrea Szabo & Gergely Ujhelyi, 2014. "Can Information Reduce Nonpayment for Public Utilities? Experimental Evidence from South Africa," Working Papers 2014-114-31, Department of Economics, University of Houston.
    15. Szabó, Andrea & Ujhelyi, Gergely, 2015. "Reducing nonpayment for public utilities: Experimental evidence from South Africa," Journal of Development Economics, Elsevier, vol. 117(C), pages 20-31.
    16. Andor, Mark A. & Gerster, Andreas & Peters, Jörg, 2022. "Information campaigns for residential energy conservation," European Economic Review, Elsevier, vol. 144(C).
    17. John A. List & Robert D. Metcalfe & Michael K. Price & Florian Rundhammer, 2017. "Harnessing Policy Complementarities to Conserve Energy: Evidence from a Natural Field Experiment," NBER Working Papers 23355, National Bureau of Economic Research, Inc.
    18. Manuel Frondel and Gerhard Kussel, 2019. "Switching on Electricity Demand Response: Evidence for German Households," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    19. Jeremy West & Robert W. Fairlie & Bryan Pratt & Liam Rose, 2021. "Automated Enforcement of Irrigation Regulations and Social Pressure for Water Conservation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(6), pages 1179-1207.
    20. Pratt, Bryan, 2020. "Property Tenure and Determinants of Sensitivity to Price and Non-Price Conservation Instruments," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304283, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:25576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.