Advanced Search
MyIDEAS: Login

Prediction Intervals for Exponential Smoothing State Space Models

Contents:

Author Info

  • Hyndman, R.J.

    ()

  • Koehler, A.B.
  • Ord, J.K.
  • Snyder, R.D.

Abstract

The main objective of this paper is to provide analytical expression for forecast variances that can be used in prediction intervals for the exponential smoothing methods. These expressions are based on state space models with a single source of error that underlie the exponential smoothing methods. In cases where an ARIMA model also underlies an exponential smoothing method, there is an equivalent state space model with the same variance expression. We also discuss relationships between these new ideas and previous suggestions for finding forecast variances and prediction intervals for the exponential smoothing methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2001/wp11-01.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 11/01.

as in new window
Length: 22 pages
Date of creation: Dec 2001
Date of revision:
Handle: RePEc:msh:ebswps:2001-11

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Forecast distribution; Holt-Winters method; Structural models;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
  2. Koehler, A.B. & Snyder, R.D. & Ord, J.K., 1999. "Forecasting Models and Prediction Intervals for the Multiplicative Holt-Winters Method," Monash Econometrics and Business Statistics Working Papers 1/99, Monash University, Department of Econometrics and Business Statistics.
  3. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
  4. Chatfield, Chris & Yar, Mohammed, 1991. "Prediction intervals for multiplicative Holt-Winters," International Journal of Forecasting, Elsevier, vol. 7(1), pages 31-37, May.
  5. S. A. Roberts, 1982. "A General Class of Holt-Winters Type Forecasting Models," Management Science, INFORMS, vol. 28(7), pages 808-820, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer, vol. 60(2), pages 407-426, June.
  2. Rob J Hyndman & Maxwell L. King & Ivet Pitrun & Baki Billah, 2002. "Local Linear Forecasts Using Cubic Smoothing Splines," Monash Econometrics and Business Statistics Working Papers 10/02, Monash University, Department of Econometrics and Business Statistics.
  3. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
  4. Rob J. Hyndman & Yeasmin Khandakar, . "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, American Statistical Association, vol. 27(i03).
  5. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
  6. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
  7. Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
  8. Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
  9. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
  10. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
  11. Ralph D. Snyder & Anne B. Koehler & Rob J. Hyndman & J. Keith Ord, 2002. "Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand," Monash Econometrics and Business Statistics Working Papers 3/02, Monash University, Department of Econometrics and Business Statistics.
  12. Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
  13. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 20(2), pages 517-533, July.
  14. Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
  15. J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
  16. Rob J Hyndman & Muhammad Akram, 2006. "Some Nonlinear Exponential Smoothing Models are Unstable," Monash Econometrics and Business Statistics Working Papers 3/06, Monash University, Department of Econometrics and Business Statistics.
  17. Mick Silver, 2006. "Core Inflation Measures and Statistical Issues in Choosing Among them," IMF Working Papers 06/97, International Monetary Fund.
  18. Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2001-11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.