IDEAS home Printed from https://ideas.repec.org/p/mns/wpaper/wp202302.html
   My bibliography  Save this paper

Growth and Resources in Space: Pushing the Final Frontier?

Author

Listed:
  • Martin Stuermer

    (International Monetary Fund, Research Department)

  • Maxwell Fleming

    (Department of Economics and Business, Colorado School of Mines)

  • Ian Lange

    (Department of Economics and Business, Colorado School of Mines)

  • Sayeh Shojaeinia

    (Department of Economics and Business, Colorado School of Mines)

Abstract

Growth models with resources and environmental externalities typically assume that planet Earth is a closed economy. However, private firms like Blue Origin and SpaceX have reduced the cost of rocket launches by a factor of 20 over the last decade. What if these costs continue to decline, making mining from asteroids or the moon feasible? What would be the implications for economic growth and the environment? This paper provides stylized facts about cost trends, geology and the environmental impact of mining on Earth and potentially in space. We extend a neoclassical growth model to investigate the transition from mining on Earth to space. We find that such a transition could potentially allow for continued growth of metal use, while limiting environmental and social costs on Earth. Acknowledging the high uncertainty around the topic, our paper provides a starting point for research on how space mining could contribute to sustainable growth on Earth.

Suggested Citation

  • Martin Stuermer & Maxwell Fleming & Ian Lange & Sayeh Shojaeinia, 2023. "Growth and Resources in Space: Pushing the Final Frontier?," Working Papers 2023-02, Colorado School of Mines, Division of Economics and Business.
  • Handle: RePEc:mns:wpaper:wp202302
    as

    Download full text from publisher

    File URL: http://econbus-papers.mines.edu/working-papers/wp202302.pdf
    File Function: First version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 1999. "Pricing the Limits to Growth from Minerals Depletion," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 691-706.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Greg Huffman, 2007. "Endogenous Growth Through Investment-Specific Technological Change," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(4), pages 615-645, October.
    4. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    5. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    6. Castelnuovo, Efrem & Galeotti, Marzio & Gambarelli, Gretel & Vergalli, Sergio, 2005. "Learning-by-Doing vs. Learning by Researching in a model of climate change policy analysis," Ecological Economics, Elsevier, vol. 54(2-3), pages 261-276, August.
    7. Radetzki, Marian, 2009. "Seven thousand years in the service of humanity--the history of copper, the red metal," Resources Policy, Elsevier, vol. 34(4), pages 176-184, December.
    8. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    9. Holmstrom, Bengt & Milgrom, Paul, 1991. "Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership, and Job Design," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 7(0), pages 24-52, Special I.
    10. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    11. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    12. Nordhaus, William D, 1974. "Resources as a Constraint on Growth," American Economic Review, American Economic Association, vol. 64(2), pages 22-26, May.
    13. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    14. Zachary Grzelka & Jeffrey Wagner, 2019. "Managing Satellite Debris in Low-Earth Orbit: Incentivizing Ex Ante Satellite Quality and Ex Post Take-Back Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 319-336, September.
    15. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    16. Carol Dahl & Ben Gilbert & Ian Lange, 2020. "Mineral scarcity on Earth: are Asteroids the answer," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 29-41, July.
    17. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    18. Crowson, Phillip, 2012. "Some observations on copper yields and ore grades," Resources Policy, Elsevier, vol. 37(1), pages 59-72.
    19. Sébastien Rouillon, 2020. "A Physico-Economic Model of Low Earth Orbit Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 695-723, December.
    20. Matthew Weinzierl, 2018. "Space, the Final Economic Frontier," Journal of Economic Perspectives, American Economic Association, vol. 32(2), pages 173-192, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    2. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
    3. Gregor Schwerhoff & Martin Stuermer, 2015. "Non-renewable resources, extraction technology, and endogenous growth," Working Papers 1506, Federal Reserve Bank of Dallas.
    4. Robbie Maris & Mark Holmes, 2023. "Economic Growth Theory and Natural Resource Constraints: A Stocktake and Critical Assessment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(2), pages 255-268, June.
    5. Bongers, Anelí & Torres, José L., 2023. "Orbital debris and the market for satellites," Ecological Economics, Elsevier, vol. 209(C).
    6. Stuermer, Martin, 2017. "Industrialization and the demand for mineral commodities," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 16-27.
    7. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    8. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    9. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    10. Sweeney, James L., 1993. "Economic theory of depletable resources: An introduction," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 17, pages 759-854, Elsevier.
    11. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    12. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    13. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    14. Bernhard, Pierre & Deschamps, Marc & Zaccour, Georges, 2023. "Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1140-1157.
    15. Klaas Lenaerts & Simone Tagliapietra & Guntram B. Wolff, 2022. "The Global Quest for Green Growth: An Economic Policy Perspective," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    16. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    17. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    18. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    19. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    20. Julien Guyot & Akhil Rao & Sebastien Rouillon, 2022. "The long-run economics of sustainable orbit use," Working Papers hal-03891292, HAL.

    More about this item

    Keywords

    space economics; metals; mining; growth; sustainability;
    All these keywords.

    JEL classification:

    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mns:wpaper:wp202302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jared Carbone (email available below). General contact details of provider: https://edirc.repec.org/data/decsmus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.