IDEAS home Printed from https://ideas.repec.org/p/mag/wpaper/150010.html
   My bibliography  Save this paper

What automaton model captures decision making? A call for finding a behavioral taxonomy of complexity

Author

Listed:
  • Stephan Schosser

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

  • Bodo Vogt

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

Abstract

When investigating bounded rationality, economists favor finite-state automatons - for example the Mealy machine - and state complexity as a model for human decision making over other concepts. Finite-state automatons are a machine model, which are especially suited for (repetitions of) decision problems with limited strategy sets. In this paper, we argue that finite-state automatons do not suffice to capture human decision making when it comes to problems with infinite strategy sets, such as choice rules. To proof our arguments, we apply the concept of Turing machines to choice rules and show that rational choice has minimal complexity if choices are rationalizable, while complexity of rational choice dramatically increases if choices are no longer rationalizable. We conclude that modeling human behavior using space and time complexity best captures human behavior and suggest to introduce a behavioral taxonomy of complexity describing adequate boundaries for human capabilities.

Suggested Citation

  • Stephan Schosser & Bodo Vogt, 2015. "What automaton model captures decision making? A call for finding a behavioral taxonomy of complexity," FEMM Working Papers 150010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  • Handle: RePEc:mag:wpaper:150010
    as

    Download full text from publisher

    File URL: http://www.fww.ovgu.de/fww_media/femm/femm_2015/2015_10.pdf
    File Function: First version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben-porath, Elchanan, 1990. "The complexity of computing a best response automaton in repeated games with mixed strategies," Games and Economic Behavior, Elsevier, vol. 2(1), pages 1-12, March.
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. Abraham Neyman, 1998. "Finitely Repeated Games with Finite Automata," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 513-552, August.
    4. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    5. Yuval Salant, 2011. "Procedural Analysis of Choice Rules with Applications to Bounded Rationality," American Economic Review, American Economic Association, vol. 101(2), pages 724-748, April.
    6. Gilboa, Itzhak, 1988. "The complexity of computing best-response automata in repeated games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 342-352, August.
    7. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
    2. Oliver Compte & Andrew Postlewaite, 2010. "Plausible Cooperation, Fourth Version," PIER Working Paper Archive 15-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 23 Jan 2015.
    3. Olivier Compte & Andrew Postlewaite, 2007. "Effecting Cooperation," PIER Working Paper Archive 09-019, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 29 May 2009.
    4. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    5. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    7. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.
    8. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    9. Beal, Sylvain & Querou, Nicolas, 2007. "Bounded rationality and repeated network formation," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 71-89, July.
    10. Yuval Salant & Jörg L. Spenkuch, 2021. "Complexity and Choice," CESifo Working Paper Series 9239, CESifo.
    11. Tim Roughgarden, 2010. "Computing equilibria: a computational complexity perspective," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 193-236, January.
    12. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    13. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    14. Coralio Ballester & Penélope Hernández, 2010. "Bounded Rationality," ThE Papers 10/10, Department of Economic Theory and Economic History of the University of Granada..
    15. Wichardt, Philipp C., 2010. "Modelling equilibrium play as governed by analogy and limited foresight," Games and Economic Behavior, Elsevier, vol. 70(2), pages 472-487, November.
    16. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    18. Westhoff, Frank H. & Yarbrough, Beth V. & Yarbrough, Robert M., 1996. "Complexity, organization, and Stuart Kauffman's The Origins of Order," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 1-25, January.
    19. Muto, Nozomu, 2014. "Strategic complexity in repeated extensive games," Games and Economic Behavior, Elsevier, vol. 83(C), pages 45-52.
    20. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mag:wpaper:150010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Guido Henkel (email available below). General contact details of provider: https://edirc.repec.org/data/fwmagde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.